Government Office of the Slovak Republic

Assessment of Cohesion Policy Impacts on the Development of Slovakia Using a Suitable Econometric Model

Evaluation Report 2015

KPMG Slovensko spol. s r.o.
June 2015
Table of content

1 Introduction
1.1 Purpose and objectives of the report
1.2 Structure of the report
1.3 Members of the expert team

2 Executive summary

3 Description of the subject of evaluation
3.1 Economic development of the Slovak Republic since 2007 at the national level
3.2 Economic development of the Slovak Republic since 2007 at the regional level
3.3 Implementation of Cohesion Policy in the Slovak Republic during the 2007-2013 programming period
3.4 Impact of Cohesion Policy on economic development – main assumptions

4 Results of evaluation at the national and regional level
4.1 Assessment of Cohesion Policy impacts at regional level assuming the 89% absorption rate
4.2 Assessing national-level impacts of the cohesion policy at 89% absorption rate
4.3 Assessing national-level impacts of the cohesion policy at 100% absorption
4.4 Comparing the results of 2014 ex-post evaluation against 2015 update

5 Answers to evaluation questions
5.1 What is the quantification of the impacts of the SF and CF implementation on Slovakia’s overall economic performance at the national and regional level?
5.2 What are the impacts of SF and CF implementation on competitiveness of Slovak regions in the reporting period?
5.3 Which factors determine and increase competitiveness in individual Slovak regions?
5.4 How much have the SF and CF contributed to increasing competitiveness of Slovak regions?
5.5 What are the impacts of the SF and CF implementation on Slovakia’s real convergence towards the EU average?
5.6 What are the prospects of the rate of Slovak economy’s real convergence until the end of the 20007-2013 programming period (taking into account the n+2 rule), i.e., by the end of 2015?

5.7 How much was the geographical allocation of EU funds efficient at the NUTS 3 level?

5.8 Has the SF and CF implementation led to changes and/or to an increase in the value added generated in individual sectors of Slovakia’s national economy? If yes, in which sectors (broken down by regions)?

5.9 What is the share of value added generated by the business and public sectors?

5.10 Taking into account the progress in the SF and CF implementation so far, to what degree the NSRF strategic objective “Considerably increase, by 2013, the competitiveness and performance of Slovakia’s regions and economy, and to increase employment while respecting sustainable development” has been met?

5.11 Are the objectives under the Europe 2020 strategy being met in individual economic sectors, thus contributing to removing regional disparities?

5.12 What is the share of the SF and CF spending under NSRF to GDP?

5.13 To what extent has the effect of the long-term sustainability of existing and newly created jobs, driven by the SF and CF spending, been fulfilled in selected sectors?

6 Findings and conclusions

7 Recommendations

8 Reference literature

9 List of acronyms, charts and tables in the document (to be supplemented later)

9.1 List of acronyms

9.2 List of tables

9.3 List of charts

Annex A: The HERMIN model
A1. Reasons for selecting the econometric model
A2. Reasons for selecting the HERMIN model
A3. Selected HERMIN model applications
A4. Keys aspects of the HERMIN model
A5. Reference literature to Annex A

Annex B: ITMS data disaggregation methodology
1 Introduction

This document is an update to the 2014 final report on the evaluation of the “Assessment of Cohesion Policy Impacts on the Development of Slovakia Using a Suitable Econometric Model”. The assessment of Cohesion Policy impacts on the development of Slovakia and its regions, as well as the answers to the evaluation questions, are primarily based on the selected model apparatus (HERMIN model). This report represents the main output of the evaluation. It provides answers to the main evaluation questions relating to the assessment of the impacts of Structural funds (SF) and Cohesion Fund (CF) in the 2007-2013 programming period. Despite the considerable complexity of creating a suitable model application capable of capturing the effects at both the national and regional level, a suitable econometric model enables the quantification of these impacts. The present evaluation is based on the figures on the implementation (drawing) of the SF and CF as of 31.12.2014.

This report constitutes Work No. 2 pursuant to the Partial Contract for Works (contract registration number 1296/2013) of 20 November 2013, effective as of 21 November 2013.

1.1 Purpose and objectives of the report

The objective of this evaluation report is to identify and quantify the impacts of Cohesion Policy implementation at the national and regional level using a suitable econometric model. The results of the evaluation feed into the formulation of the conclusions and recommendations designed to increase the effectiveness of Cohesion Policy implementation in support of the economic and social growth in the Slovak Republic.

1.2 Structure of the report

The evaluation report is divided into the following chapters:

1. Chapter 1 contains introduction to the Final Report, featuring the basic information on the purpose and objectives of the evaluation.

2. Chapter 2 contains the overall summary of our evaluation intended for a wider professional public, namely the main findings, conclusions and recommendations.

3. Chapter 3 describes the economic development of Slovakia during the CF and SF implementation (2007-2014) at both the national and regional levels. The chapter also contains basic information on Cohesion Policy implementation and its estimated impacts on Slovakia during the 2007-2014 programming period.

4. Chapter 4 presents the main results of the evaluation of SF and CF impacts on the Slovak economy. Cohesion Policy impacts have been assessed separately for the national and separately for the regional level. The outputs of the econometric model served as a basis in formulating answers to the main evaluation questions. This chapter also compares the results of the update with the 2014 report.

5. Chapter 5 is structured along individual evaluation questions. Each sub-chapter describes the approach used in our evaluation, including the results of analyses, summary of the main findings and summary of the answers given.
6. Chapter 6 features the most important findings and conclusion of the evaluation of SF and CF impacts on Slovakia’s development using the econometric model.

7. Based on the findings and conclusions, the expert team formulated strategic recommendations aimed at enhancing positive impacts of Cohesion Policy on Slovakia’s economic development at the national and regional level. The specific recommendations are presented in Chapter 7.

Annexes – Describe the econometric model itself, including the substantiation of its selection, explain the methodology applied to the ITMS data disaggregation, and contain additional tables and charts.

1.3 Members of the expert team

Research team:

<table>
<thead>
<tr>
<th>Name of the researcher</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing. Marek Radvanský, PhD – SAS Institute of Economic Research, Lead Researcher</td>
<td></td>
</tr>
<tr>
<td>Ing. Karol Frank, PhD – SAS Institute of Economic Research</td>
<td></td>
</tr>
<tr>
<td>Ing. Ivan Lichner, PhD – SAS Institute of Economic Research</td>
<td></td>
</tr>
<tr>
<td>Mgr. Tomáš Miklošovič, PhD – SAS Institute of Economic Research</td>
<td></td>
</tr>
</tbody>
</table>

Project team:

<table>
<thead>
<tr>
<th>Name of the expert</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing. Jozef Géci</td>
<td>Project management</td>
</tr>
<tr>
<td>Mgr. Martin Obuch</td>
<td>Coordinator</td>
</tr>
<tr>
<td>Ing. Marek Radvanský, PhD.</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Ing. Ivan Lichner, PhD.</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Ing. Karol Frank, PhD.</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Mgr. Tomáš Miklošovič, PhD.</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Ing. Tomáš Domonkos, PhD.</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Ing. Viliam Kitta</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Mgr. Danka Kovaľová</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Mgr. Michal Blaško</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>Ing. Katarína Košč</td>
<td>Evaluator / Analyst</td>
</tr>
<tr>
<td>András Kaszap</td>
<td>Methodology / QA</td>
</tr>
<tr>
<td>János Matolcsy</td>
<td>Methodology / QA</td>
</tr>
<tr>
<td>Janusz Zaleski / PL</td>
<td>Methodology / QA - WARR</td>
</tr>
<tr>
<td>Zbigniew Mogila / PL</td>
<td>Methodology / QA - WARR</td>
</tr>
</tbody>
</table>
2 Executive summary

Introduction

The purpose of this evaluation report is to quantify, through an econometric model, the impacts of the implementation of Cohesion Policy in the 2007-2013 programming period on the development of Slovakia. This evaluation is the second ex-post analysis of the impacts of the structural funds and Cohesion Fund (SF and CF, respectively) on Slovakia’s economy during the period under evaluation. The regional breakdown of our evaluation to the NUTS 3 level is unique in the EU context as it provides for a more detailed analysis of the growth- and cohesion-related impacts of the SF and CF across Slovakia. The results of the evaluation can be used to make Cohesion Policy funds more effective in stimulating Slovakia’s economic and social growth after 2014. Significantly enough, also the 2014-2020 period is characterised by the slow uptake of EU funds in the early stages of the programming period.

The first part of our evaluation focuses on the overall macroeconomic development in the 2007-2013 programming period at both the national and regional level (extended to 2015 in order to capture the entire eligibility period). It also discusses the reallocation of resources between the Funds and Operational Programmes (OPs). In the next part, the authors present some of the assumptions and limitations of the applied econometric model (HERMIN), described in detail in Annex A. The assessment of the Cohesion Policy impacts on the development of Slovakia and its regions, as well as answers to the evaluation questions, are primarily based on the outputs of the HERMIN model. The use of the model for the evaluation of impacts was necessary, because impacts of the SF and CF implementation cannot be evaluated merely based on the statistical analysis of macroeconomic variables before, during and after the programming period. Albeit statistical data do provide information on a set of variables (indicators) in individual periods, they do not give a picture of the alternative scenario, i.e., how would have the economy developed in the absence of the SF and CF. The model enables us to quantify the impact of SF and CF implementation on various macroeconomic indicators and can also capture the impact of several factors simultaneously, including those which are not directly observable, e.g., mutual impact of growth multipliers across economic sectors. In view of the required outputs and given the availability of statistical data, the HERMIN model (developed since the late 1980s to analyse the effects of SF and CF implementation at the national level) has been selected as the most appropriate one; in the recent years, the model has undergone a series of significant methodological changes enabling its application also at the regional level. The reasoning for the selection of this model is described in detail in Annex A. For the purposes of evaluation, the analysis divides the economy into five sectors: agriculture, industry, construction, market services and non-market services.

Structure of SF and CF funds drawn at the regional level

The 2007-2013 programming period was marked by a significant delay in the drawing of SF and CF funds; the drawing began only after 2008. A look at the SF and CF spending as a percentage of GDP shows considerable differences across regions. The highest share in 2013 was achieved in the Trenčín and Prešov regions (almost 5%), while the Bratislava region remained below 1% in any given year of the period due to the high regional GDP (in nominal terms) and the region’s limited eligibility for Cohesion Policy support. In 2014, the allocations among individual regions were spread slightly more evenly. The drawing of EU funds in 2014
reached about 3.5% of GDP in the Trenčín, Prešov and Žilina regions, and exceeded 1% in the Bratislava region (mainly thanks to the purchase of public transport vehicles). In absolute terms, Slovakia spent more than EUR 7.6 billion worth of EU funds by the end of 2014, which is EUR 1.5 billion more than at the end of 2013. Of the total, only the Trenčín, Prešov and Žilina regions drew over one billion euros (1.3, 1.2 and 1.2 billion, respectively). These regions invested most of the EU funds in infrastructure. In order to meet the 2015 absorption target of 89%, Slovakia will have to draw EUR 2.7 billion in 2015, which is 60% more than in 2013, the most successful year in terms of absorption.

For the purposes of this project, the expenditures covered by EU funds have been reclassified into the following five categories: infrastructure (52.1% of total expenditures, about €5 bn), human capital (7.4%, about €700 m), industry (16%, slightly above €1.5 bn), services (14.6%, over €1.4 bn) and research and development (10%, almost €1 bn). In the category of expenditures on infrastructure, the highest percentage (72%) was invested in the Trenčín region. On the other hand, the share of infrastructure expenditures in the Bratislava region in 2014 reached less than 15%. The differences in human capital investments between regions were not that stark, spanning from 3 to 7%, the only exception being the Bratislava region where human-capital expenditures accounted for 15% of the total. In absolute terms, the highest amount of EU funds was invested to support industry in the Prešov region (about €274 m). The highest share of expenditures in support of services was reported by the Bratislava region (almost 24%), which is a direct consequence of the type of projects implemented in the region. The lowest share of these expenditures was reported by the Trenčín region (less than 11%), also due to the high share of expenditures on infrastructure. In absolute terms, the drawing of funds in support of services was geographically fairly well balanced, spanning from EUR 175 to 223 million. The research and development expenditures were concentrated mainly in three regions: Bratislava (about €242 m), Košice (almost €161 m) and Banská Bystrica (slightly over €100 m); in BA, these expenditures represented 28% of the total. The level and structure of absorption have largely influenced the way in which the implementation of EU funds affected the functioning of regional economies.

Impact of the SF and CF implementation on the economy and regional development

The impact of the SF and CF on the economic development of individual regions was assessed using several indicators, such as GDP, employment, convergence to the EU average, etc. The impact of EU-funded investments on individual regions was similar and positive when measured by most of the indicators. The SF and CF implementation generated significant additional cumulative growth in Slovakia’s GDP: in their absence, the level of GDP would have been lower by 5% in 2013, almost by 6% in 2014 and by 8.4% (estimate) in 2015. A look at individual years of the 2009-2014 implementing period suggests that the SF and CF contributed towards the average annual regional GDP growth from 0.6 p.p. to 1.5 p.p. In the 2009-2014 period, the highest additional growth was achieved in the Žilina, Trenčín and Prešov regions. The additionally quantified effects of EU funds in the Trenčín region contributed 2.4 p.p. to the regional growth, mainly due to the implementation of major infrastructural projects. The assumption of a higher additional growth contribution in 2014 was not confirmed and the real effects were considerably lower. In 2015, in connection with the expected higher degree of

1Scenario 89% was defined by Government Office of the Slovak Republic based on the anticipated risk of under-drawing in 2015 determined by the MA. More in Chapter 5.1.
implementation, the contribution of EU funds towards the regional GDP growth should be more significant.

The additional economic growth generated by EU funds also contributed towards the creation of new jobs. Without support from the SF and CF, the number of jobs in 2013 would have been lower by 80,000. As a consequence of slackened implementation, the SF and CF contribution towards employment in 2014 was slightly lower. Most new jobs were created in the market services sector (approximately 45,000). In the construction sector, the SF and CF contributed about 25,000 jobs in 2014. The industry sector shows the slowest, yet relatively stable pace of creating new jobs. In this sector alone, the SF and CF generated more than 7,000 new jobs in 2013 and additional 1,000 new jobs in 2014. Subject to meeting the 89% absorption target, we can expect the creation of more than 120,000 jobs in 2015.

The sustainability of newly created jobs plays an important role in assessing the effectiveness of EU-funded investments, however, it can be evaluated only once project implementation is completed. At the national level, the SF and CF are expected to generate 103,000 additional jobs (average anticipated additional employment in 2014 and 2015) compared to the situation without SF and CF implementation, of which almost 38,000 jobs will be sustainable (existing at least three years after EU funding). In the market services sector, the average number of new jobs in 2014 and 2015 will reach 57,000, of which 24,000 have been identified as sustainable (42%). In the construction sector, the average number of additional jobs created in 2014 and 2015 thanks to the SF and CF implementation is expected to reach 35,000. Given the nature and flexibility of jobs creation in the construction sector, the share of sustainable jobs is the lowest (less than 20%) from among all sectors. The lowest number of new jobs will be created in industry (10,000), however, the sustainability rate in this sector is expected to reach 98%.

The evaluation has not confirmed any significant direct impact of support from the SF and CF on the competitiveness of the country measured by its ranking in the Global Competitiveness Report of the World Economic Forum. The main reason is that investments from Cohesion Policy funds have only an indirect impact on most of the evaluated areas. If competitiveness is measured by unit labour costs, EU-funded investment had a slightly positive impact at the national level during the period under evaluation. At the regional level, the impact of SF and CF investments measured by unit labour costs was positive in all regions, but in Bratislava region in which was this impact insignificant. Nevertheless, these investments had a positive impact on labour productivity in all regions of Slovakia.

The analysis has identified a significantly positive impact of the SF and CF on the process of Slovakia’s real convergence to the EU average. Without these funds, the convergence of six out of the eight regions would have been halted. However, without the contribution of the metropolitan region of Bratislava, Slovakia’s convergence would have turned into divergence.

Conclusions and recommendations

The use of Cohesion Policy funds in the 2007-2014 period had a significantly positive impact on the economy of Slovakia. Cohesion Policy has proven its full worth in alleviating the impacts of the global economic and financial crisis on the Slovak economy which would have been much harsher, particularly on the labour market, had the SF and CF funds not been available. In the absence of these funds, Slovakia’s GDP would have been lower by 5% in 2013, by almost 6% in 2014 and by 8.4% (estimate) in 2015. The average annual contribution to real economic growth at national level is slightly below 1 p.p.
The NSRF strategic objective “to considerably increase, by 2013, the competitiveness and performance of Slovakia’s regions and of the economy, and to increase employment while respecting sustainable development” has been met only partially. It is therefore necessary to direct SF and CF interventions into areas which have a potential to generate positive effects (e.g., quality of public administration, science, research and innovation, education, quality of human resources), ensure adequate co-financing from the national budget and encourage the private sector’s participation.

The SF and CF implementation supported the process of real convergence to the EU-28 average in all Slovak regions, except for Banská Bystrica. The development at the national level confirms that between 2007 and 2014 Slovakia moved closer to the EU-28 average. We expect that this trend will also continue in 2015 when Slovakia should reach 77 % of the EU-28 average (measured in GDP per capita at PPP). On the other hand, there was no regional convergence in the country during the programming period and the existing disparities between the regions even slightly increased. In the absence of the SF and CF, these regional disparities would have grown much wider.

The impact of Cohesion Policy on employment at both the national and regional level was significant. The global economic and financial crisis only exacerbated the existing problems on Slovakia’s labour market. The adverse impact of the crisis hit the labour market (employment and unemployment) with some delay, but with high intensity. The estimates of the econometric model show that investments from the SF and CF in 2014 generated almost 80 000 new jobs. Investments from the SF and CF into infrastructure (more than a half of all funds drawn) can generate short-term jobs, mainly in the construction sector. However, in the pursuit of employment targets, it is more appropriate to invest in industry and services because these sectors offer longer sustainability of the newly created jobs. At the same time, it is necessary to implement programmes which do not distort market competition at the level of individual sectors or regions, taking also into account the absorption capacity of the sectors and regions concerned. The results of the full-absorption scenario suggest that if the absorption capacity of a particular region is exceeded, the effectiveness of interventions decreases considerably. In other words, higher drawing of funds reduces their effectiveness measured by the CSF multiplier. Under the full-absorption scenario, effectiveness (CSF multiplier) in the Banská Bystrica region declined by more than 6.5 % and in other four regions (TT, TN, NR and KE) by 3.2 % to 4.2 %. In the Bratislava and Prešov regions, effectiveness increased/decreased only slightly. Under the 89-% scenario, the allocated volume is most distant from the absorption capacity in the Žilina region where full absorption of the allocation would increase effectiveness by more than 7 %.

CSF multiplier, as a comprehensive indicator measuring the effectiveness of structural funds implementation, represents the additional effect which each euro spent from the SF and CF has on GDP (expressed in EUR). The Bratislava region reached the highest value of the multiplier throughout the period under evaluation, which is primarily due to the structure and volume of the funds invested in the region. In comparison with other regions, this region had the lowest drawing of EU funds (except for 2014) and the lowest share of investments in infrastructure. Increased volume of investments in research and development creates better conditions for potential growth and thus makes the use of EU funds in this region more effective. Since the region is highly developed, even lower levels of drawing induce additional growth and thus increase the CSF value. The lowest CSF value is in the Banská Bystrica region, 1.7 in 2015. In the other regions, CSF multiplier spanned from 1.7 to 2.3 in 2014 and from 1.8 to 2.3 in 2015 (without the Bratislava region where the multiplier reached 3.1 and 3.2, respectively). In 2013,
CSF multiplier in BA reached 3.0 and the lowest level, at 1.6, was recorded in four regions: TN, BB, PO and KE. In the other regions, CSF multiplier in 2013 spanned from 1.8 to 2.2.

Implementation of the SF and CF has had a positive impact on the creation of value added in all sectors of the economy and across all regions of Slovakia. Investments from EU funds have increased the private sector’s share in the creation of value added and helped to alleviate the negative impacts of the global economic crisis on this part of the economy. Without SF and CF investments, the public sector’s share in five out of eight regions would have increased. In the private sector, support should mainly focus on projects which create ample business environment, without distorting competition.

In addition to the sectoral structure of SF and CF investments, also the spread of investments in time is capable of generating additional effects (benefits) for the economy. The sluggish spending of EU funds in the first two years of the programming period, coupled with lower absorption capacity, represent one of the reasons why Slovakia is unlikely to spend the entire allocation available for the 2007-2013 programming period. A more evenly spread implementation of the SF and CF across the entire programming period would generate stronger positive effects for the economy, accelerate the process of its convergence and, in all likelihood, make a more significant contribution towards mitigating the impacts of the global economic and financial crisis in Slovakia.
3 Description of the subject of evaluation

3.1 Economic development of the Slovak Republic since 2007 at the national level

The 2007-2014 economic development in Slovakia was influenced by a number of factors. The completion of the process of transformation and subsequent participation in the integration processes of the European Union (EU) after Slovakia’s accession in 2004 (and then integration into the Schengen area in 2007 and adoption of the euro in January 2009) represented the key milestones for development. The economic boom in Slovakia, which started in 2002 and peaked in 2007, ebbed to the onset of the financial and economic crisis in 2008. The moderate economic recovery in 2010, which followed after the 2009 recession, was subsequently muffled by uncertainties across the Eurozone as the debt crisis began to unfold. After 2013, when Slovakia’s real economic growth decelerated the most in the post-crisis period, the external environment shows signs of gradual recovery and sends positive signals for economic growth to regain momentum in the years to come. At the same time, however, Slovakia’s public debt neared the ‘debt brake’ threshold of 57% of GDP, limiting the options for fiscal policy to stimulate economic growth through increased public spending; since 2013, general government deficits have remained below 3% of GDP.

One of the key elements influencing our evaluation presented in this update to the report was the introduction of the ESA2010 methodology. In the case of some indicators (such as GDP or value added), the new methodology brings a slightly different perspective on past developments. In our research, we applied the new methodology wherever possible. Where the model apparatus was used, we based ourselves on the ESA95 methodology in order to remain compatible with previous outputs.

Chart 1: Slovakia’s economic growth in 2006-2014 (2015 - forecast), real GDP growth (left axis) and nominal GDP growth in billion EUR (right axis), ESA 2010

Source: Slovak Statistical Office
In 2006, both the labour market and economic growth stability developed positively (Morvay, Okáli, 2006). This trend continued into 2007 when the economy recorded the highest growth rate ever, reaching 10.7 % year-on-year (Chart 1). The growth slackened in 2008, falling to about a half of the 2007 rate (down 5.3 p.p.), yet the economic slowdown caused by the unfolding crisis became particularly noticeable only in the last quarter of the year. The creation of new jobs in this period (2006-2008) followed a stable positive trend as it was driven by growing economic output stimulated by both foreign and domestic demand. The average number of new jobs created per year reached 50 000, which increased employment by 2 to 4 % annually. The impacts of the global financial and economic crisis began to materialise in Slovakia in the course of 2009, which adversely influenced the convergence process. Slovakia, as a small and open economy, was susceptible to the decline in foreign demand, mainly in the EU, which, in addition to the shrinking output, had negative repercussions for the employment. Almost two thirds of the jobs created in the economy during 2006-2008 perished in the first two years of the crisis (2009-2010). When the effects of the financial crisis subsided and the situation got more stable, 2010 saw a pro-growth correction. The structural changes in the economy prompted by the crisis, coupled with the secondary onset of the debt crisis in some member states and the need for fiscal consolidation, influenced the development in the following years, curbing economic growth until 2013. At the same time, Slovakia’s economic growth was driven predominantly by net exports. Thus the slightly positive, yet still downward economic trend, fell short of generating new jobs during this period (Chart 2). The first really noticeable employment growth occurred – despite the still relatively low real GDP growth – only in 2014 (over 30 000 jobs). Similarly, after five years of real decline (or stagnation in 2010), final household consumption, as one of the main factors of growth driven by domestic demand, began to increase in real terms in 2014 thanks to rising household income attributable to higher employment. Hence the implementation of the SF and CF helped to maintain employment, softened the impacts of the crisis, and facilitated structural shift in employment towards supported sectors.
The disparities in the growth and performance of individual sectors of the economy can be illustrated on their value added (Chart 3). During the period under evaluation, individual sectors developed along disparate trajectories. The highest share in total value added (average for the entire period) was attained in the sector of market services (45.3%) and industry (27.5%). Non-market services accounted for 14.1%, construction sector 9.3% and agriculture 3.7%.

The highest growth rates in value added were reported in industry (mainly manufacturing) and market services. The growth in the other three sectors lagged considerably behind these two. The crisis affected each of the five sectors quite significantly. After a moderate decline in 2009, the sector of market services slowly picked up and kept its growth momentum until the end of the period. The industrial sector was most susceptible to the fall in demand caused by the economic crisis. The initial decline turned into growth in 2010, with some manufacturing processes restored at lower employment rates. Since then, the sector has been on a stable growth trajectory. In 2013, value added outside the industrial manufacturing sector declined slightly. Relatively resistant to the external macroeconomic shocks, the sector of non-market services grew at a moderate pace throughout the period under evaluation. Despite the relatively robust consolidation effort and cuts in public expenditures, the only significant drop in the sector’s value added growth rate occurred in 2011. The construction sector developed somewhat differently. In the 2006-2008 period of economic boom, the sector’s robust growth was driven by demand for investments in other sectors of the economy.
After the crisis year of 2009, value added in the construction sector stabilised, although it still continued to slightly decline in real terms. This was due to both shrinking demand for investments and feeble activity on the real-estate market. The real-estate bubble burst also in Slovakia, but the impacts were not that dramatic because the crisis set in at a time when the construction sector was only entering the period of massive production. The above decline was partly offset by investments in infrastructure funded from the SF and CF. Agriculture was the last sector in the order of contributions to value added. The average nominal growth during 2006-2013 reached 8%. Price development represents an important factor in this sector. Rather than by investments from the SF and CF, the sector’s creation of value added was determined by the Common Agricultural Policy.

3.2 Economic development of the Slovak Republic since 2007 at the regional level

At the EU level, both regional development and convergence are monitored at the NUTS 2 level. In the case of Slovakia, four regions are monitored. Since the NUTS 2 level in Slovakia is only statistically aggregated, while the regional functional units are at the NUTS 3 level (higher territorial units, also referred to as self-governing regions), our analysis focuses on this ‘more detailed’ level. This level provides for a more detailed evaluation and analysis of the effects of the adopted measures and the impact they have on the regional convergence within Slovakia.

Slovakia’s regional development shows significant disparities in almost all indicators; moreover, the process of convergence towards the strongest region is almost invisible. In comparison with EU member states, Slovakia shows one of the highest regional disparities. The comparison of development among regions is largely impeded by the two-year delay in the publication of official statistics at the regional level. In view of this limitation, for the purposes of evaluation, the missing regional data were substituted by the output of econometric-optimisation methods (see Annex D).
In terms of regional gross domestic product, seven regions generate comparable GDP (Chart 4). On the other hand, the Bratislava region’s GDP is more than double the average of the remaining seven regions. A closer look at regional GDP shows that all regions grew in 2007-2014, yet their pace of growth varied quite considerably (Table 1). Only the Trnava region grew in the crisis year of 2009. The remaining regions’ nominal GDP in 2009 declined, from -6.1% in the Bratislava region to –9.3% in the Trenčín region. The highest average GDP growth during 2007-2014 was reported in the Košice region, up by 5.3% at current prices (compared to the national average of 3.8%), followed by the regions of Trnava (4.6%) and Banská Bystrica (4.5%). The slowest annual GDP growth (below 3%) was in the regions of Nitra and Trenčín.

Table 1: Year-on-year growth in regional GDP, c.p.(2012-13 update, 2014 estimate) in %

<table>
<thead>
<tr>
<th>Region</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012 (a)</th>
<th>2013 (a)</th>
<th>2014 (o)</th>
<th>Average growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bratislava region</td>
<td>11.7</td>
<td>8.8</td>
<td>-6.1</td>
<td>4.9</td>
<td>4.7</td>
<td>3.1</td>
<td>1.5</td>
<td>2.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Trnava region</td>
<td>13.9</td>
<td>6.7</td>
<td>0.3</td>
<td>4.3</td>
<td>3.9</td>
<td>1.9</td>
<td>3.5</td>
<td>2.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Trenčín region</td>
<td>10.3</td>
<td>4.2</td>
<td>-9.3</td>
<td>6.4</td>
<td>3.7</td>
<td>3.0</td>
<td>-1.1</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Nitra region</td>
<td>10.1</td>
<td>6.7</td>
<td>-8.3</td>
<td>4.4</td>
<td>3.9</td>
<td>3.0</td>
<td>0.5</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Žilina region</td>
<td>8.4</td>
<td>10.2</td>
<td>-6.3</td>
<td>2.0</td>
<td>11.6</td>
<td>-3.0</td>
<td>-1.1</td>
<td>2.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Banská Bystrica region</td>
<td>15.6</td>
<td>12.9</td>
<td>-6.8</td>
<td>7.4</td>
<td>1.3</td>
<td>2.8</td>
<td>0.9</td>
<td>1.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Prešov region</td>
<td>11.9</td>
<td>10.1</td>
<td>-9.1</td>
<td>6.1</td>
<td>0.6</td>
<td>4.2</td>
<td>3.4</td>
<td>-0.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Košice region</td>
<td>12.3</td>
<td>16.2</td>
<td>-7.4</td>
<td>2.8</td>
<td>9.7</td>
<td>4.8</td>
<td>1.8</td>
<td>2.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>11.9</td>
<td>8.4</td>
<td>-6.4</td>
<td>5.3</td>
<td>4.4</td>
<td>2.9</td>
<td>2.0</td>
<td>2.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Source: Slovak Statistical Office and calculations by authors

2Time t is expressed in years and expresses relationship to the latest published data. Present time (year 2015) is marked as t+dt; indicator t is the latest period for which data at the national level have been published, i.e., year 2014. The delay in the publication of data at the regional level indicated between the period t-2 and t. Period t-2 is the period for which regional accounts have been last reported, i.e., year 2012. From the viewpoint of the analysis, this is an ex-post period, but some data for the regions must still be estimated. Period t+n (analysis) is identical with n+2 (2015). See Annex.
The convergence of Slovakia’s regions towards the EU-28 average is measured by GDP per capita at PPP. This indicator has a number of statistical limitations, particularly at the regional level, and offers a slightly distorted view (Chart 5).

Source: Slovak Statistical Office and calculations by authors

1Data for 2012 and 2013 have been calculated on the basis of the latest national data using optimisation methods.
The distortion is mainly attributable to the way in which GDP is reported (based on the registered office of companies), to the size of workforce in the region (a portion of GDP, mainly in the Bratislava region, is generated by workers commuting from other regions) and the absence of price indices (PPP) at the regional level. Hence the real difference between the regions may be lower by a third (see Radvanský, 2014). Nevertheless, regional disparities remain substantial.

In terms of convergence of Slovakia’s regions towards the EU-28 average, their economic performance improved and, in 2007-2014, the country as a whole, increased its GDP from 68% to 75% of the EU average. However, from the regional perspective, convergence has been fairly imbalanced. GDP per capita at PPP in the Bratislava region exceeds 180% of the EU-28, which is one of the highest GDPs among all European regions (Bratislava ranks among the 10 richest EU regions). At the same time, its economic growth clearly outpaces the growth of the other Slovak regions. Given the high GDP, even a moderate growth in the Bratislava region contributes to the country’s GDP more than any other region. Although this increases regional disparities, it drives the convergence of the national economy closer to the EU-28 average. The convergence of the remaining regions was only moderate, or stagnated. In 2008-2013, Banská Bystrica was the only region where convergence in real terms declined. If compared in absolute terms, the situation is least favourable in the Prešov region where the 2014 level of convergence reached only 45% of the EU-28, which was one of the lowest in the EU. The other regions exceeded 50% of the EU average, the Banská Bystrica region by a narrow margin (54%). Apart from the Bratislava region, only the Trnava region exceeded the cohesion target of 75% when it reached 83%. The remaining regions are below the target and their average convergence level in 2013 reached about 65% of the EU average.

The creation of gross value added follows similar path as that of GDP. Slovakia can be divided into two groups. The creation of gross value added in the Bratislava region is more than double compared to the average of the other regions. In 2014, the creation of gross value added in the remaining regions spanned from EUR 5.7 billion in the Banská Bystrica region to EUR 7.7 billion in the Košice region. The regions of Prešov, Nitra and Košice again reported the highest rates of growth.

Chart 6: Creation of gross value added by regions, in million EUR at c.p.

Source: Slovak Statistical Office and calculations by authors
Our analysis of regional employment is based on the ESA 95 methodology for national accounts. The overall development can be divided into three periods: (1) Employment growth during the 2007-2008 period of economic boom, (2) steep decline in employment during 2009-2010 caused by the global economic crisis, and (3) period of stagnation or moderate increase in 2011-2013. Employment increased significantly only in 2014 with over 30 000 new jobs in the economy.

Even though the Bratislava region is not among the biggest by the size of population, more than a fifth of all employees are formally employed here. Košice was the only region where the number of jobs in 2014 exceeded the 2008 maximum (or 2009 for the Bratislava region). On the other hand, the number of jobs in the Trnava and Banská Bystrica regions is by approximately 10 000 lower compared with the pre-crisis period. The 2014 employment in the remaining regions reached the pre-crisis level, which indicates that the negative repercussions of the crisis on employment, despite its changed structure, are slowly ebbing.

3.3 Implementation of Cohesion Policy in the Slovak Republic during the 2007-2013 programming period

During the 2007-2013 programming period, EU Cohesion Policy focused on three main objectives: convergence, regional competitiveness and employment, and European territorial cooperation. In order to reach these objectives, individual Member States and their regions could use support from the following funds: European Regional Development Fund (ERDF), Cohesion Fund (CF) and European Social Fund (ESF).
The total Cohesion Policy allocation for Slovakia in the 2007-2013 programming period reached almost EUR 11.5 billion. The objectives and the way in which the resources available in the SF and CF would be used were defined in the National Strategic Reference Framework (NSRF) in 2006. The NSRF was divided into 11 operational programmes implemented within the objectives of ‘convergence’ and ‘regional competitiveness and employment’ (ETC⁴ programmes are not a part of the NSRF). All operational programmes can be characterised as sectoral/thematic programmes which are managed and implemented at the national level. In light of the global financial and economic crisis and also due to other factors, the financial allocations for individual programmes had to be revised.

Table 2: Sources of Cohesion Policy funding and their drawing as at 31.12.2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERDF total</td>
<td>6 099 989 765</td>
<td>4 146 648 136</td>
</tr>
<tr>
<td>CF total</td>
<td>3 898 738 563</td>
<td>2 303 013 605</td>
</tr>
<tr>
<td>ESF total</td>
<td>1 497 739 439</td>
<td>1 037 932 636</td>
</tr>
<tr>
<td>NSRF total, 2007-2013</td>
<td>11 496 467 767</td>
<td>7 487 594 377</td>
</tr>
</tbody>
</table>

Source: ITMS

Based on the ITMS data made available by the Central Coordinating Authority (CCA), as of 31.12.2014 the level of funds’ drawing from the EU source reached approximately 65% of the total allocation for the 2007-2013 programming period. Based on the available data,⁵ the level of contracting at the end of 2014 reached almost 105% when individual MAs strived to maximise the probability of achieving the highest possible absorption of EU funds.

By the end of 2014, the implementation of SF and CF funded projects reached EUR 9.68 billion, including co-financing from the national budget and from beneficiaries’ own resources. This amount also includes those expenditures which were classified as ineligible, i.e., expenditures financed from EU funds and national budget in conflict with the applicable legislation which have been or are to be recovered from beneficiaries. The applied model includes ineligible expenditures into the amounts drawn, because, from analytical point of view, irregularities are implicitly included in the published statistical data as they represent real expenditures in the economy regardless the source of their financing and they only reduce the amount of available funds in the economy in the subsequent period. The bulk of the funds drawn by the end of 2014 were EU funds, approximately EUR 7.5 billion, followed by funds from the national budget (EUR 1.3 billion) and the own resources of final beneficiaries (EUR 788 million).²

⁴European territorial cooperation
⁵Source: www.nsrr.sk
In terms of structure, most funds were invested in infrastructure, primarily in projects implemented under the OP Transport, OP Environment and Regional OP. A substantial part of expenditures on research and development from the OP Research and Development was invested in the development of R&D infrastructure. Projects implemented under the OP Education and the OP Employment and Social Inclusion focused on the improvement of human capital. The other important priorities pursued by SF and CF implementation under other operational programmes included sustainable economic growth, employment and competitiveness. The effectiveness of the SF and CF funds implemented in the pursuit of the defined objectives is evaluated in the next parts of this report.

The implementation of the funds made available for the programming period was accompanied by a number of complications due to which the drawing of funds in the early years of the period (2007-2008) was only marginal. This delay, together with other factors, increased the volume of funds at risk (of not being drawn) later on. At the end of 2013, the rate of drawing reached 53 %; with 65 % of the allocation drawn by the end of 2014. EU funds’ implementation between 2013 and 2014 declined by almost 6 % year-on-year which, compared to the average annual growth in the three preceding years (over 16 %), represents a sharp turn in dynamics and a factor which reduces the likelihood of implementing all allocated funds successfully. The dynamics of growth in 2014 was negatively affected by the decision of the European Commission to suspend the reimbursement of certain expenditures. The remaining available allocation of funds implementable during 2015 from the EU source represents about EUR 4 billion. This volume is so enormous that, given the actual absorption capacity of the Slovak economy, its real implementation is highly improbable.

6The table does not reflect the ineligible expenditures recovered from beneficiaries, therefore the data may slightly differed from those presented in other parts of this report.

Table 3: Drawing of SF and CF funds by operational programme as of 31.12.2014, in million EUR

<table>
<thead>
<tr>
<th>Operational Programme</th>
<th>EU</th>
<th>SR</th>
<th>OR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>211 - OPIS</td>
<td>558.1</td>
<td>171.3</td>
<td>2.4</td>
<td>731.8</td>
</tr>
<tr>
<td>221 - ROP</td>
<td>1208.1</td>
<td>150.8</td>
<td>67.3</td>
<td>1426.1</td>
</tr>
<tr>
<td>222 - OP Technical Assistance</td>
<td>66.3</td>
<td>14.8</td>
<td>0.0</td>
<td>81.2</td>
</tr>
<tr>
<td>223 – OP Bratislava Region</td>
<td>59.9</td>
<td>8.9</td>
<td>4.8</td>
<td>73.6</td>
</tr>
<tr>
<td>231 - OP Transport</td>
<td>2090.3</td>
<td>441.1</td>
<td>16.3</td>
<td>2547.7</td>
</tr>
<tr>
<td>241 - OP Environment</td>
<td>1003.7</td>
<td>146.7</td>
<td>137.2</td>
<td>1287.6</td>
</tr>
<tr>
<td>251 - OP Competitiveness and Economic Growth</td>
<td>512.9</td>
<td>86.1</td>
<td>472.0</td>
<td>1071.0</td>
</tr>
<tr>
<td>261 - OP Education</td>
<td>339.2</td>
<td>53.1</td>
<td>7.7</td>
<td>400.0</td>
</tr>
<tr>
<td>262 - OP R&D</td>
<td>758.8</td>
<td>110.8</td>
<td>48.2</td>
<td>917.8</td>
</tr>
<tr>
<td>271 - OP Employment and Social Inclusion</td>
<td>711.0</td>
<td>124.0</td>
<td>27.1</td>
<td>862.2</td>
</tr>
<tr>
<td>281 - OP Health</td>
<td>232.9</td>
<td>40.8</td>
<td>5.1</td>
<td>278.8</td>
</tr>
<tr>
<td>Total</td>
<td>7541.3</td>
<td>1348.4</td>
<td>788.1</td>
<td>9677.8</td>
</tr>
</tbody>
</table>

Source: ITMS. Note: EU – EU funds, SR – co-financing from national budget, OR – co-financing from beneficiaries’ own resources.
3.4 Impact of Cohesion Policy on economic development – main assumptions

In the preparatory phase, the assumptions for the impact of Cohesion Policy were summarised in a framework document entitled “Ex-ante Evaluation of the National Strategic Reference Framework” prepared by the SAS Institute of Economic Research in 2006 (see Šikula et al., 2006). The evaluation states that the strategic part of the document, which describes the anticipated impacts of Cohesion Policy, focuses on the national economy as a whole and its convergence towards the EU average, without due regard for the regional dimension of convergence which was to be achieved later, individually, through individual operational programmes. The summary of the evaluation, on page 20, reads: “The proposed context indicators which are to evaluate the implementation of support are often formulated in a way which renders their reporting at the NUTS 2 level and below impossible, hence the regional dimension of these interventions cannot be captured.”

The assumptions regarding the use of operational programmes define two types of effects. The so-called ‘hard’ effects which are measurable in the course of implementation through a set of selected indicators and ‘soft’ effects, particularly those making the work of public administration more efficient (which are rather difficult to quantify). Obviously, when the ex-ante evaluation was planned in 2006, Slovakia was at the peak of its economic boom. It was a period when, for example, unemployment-related issues were dealt with primarily through the prism of qualification structure, rather than through numbers. Labour market began to suffer from a shortage of potential workforce with adequate skills, mainly in the manufacturing and ICT sectors. However, these problems receded when the crisis broke out and the main effort of the government geared towards maintaining employment and supporting the existing jobs. The assumptions concerning the impact of the SF and CF through the NSRF were also verified on models. The ex-ante estimate of impacts, using the recommended HERMIN model, focused on the national level only (see Kvetan et al., 2006).

Chart 8: Comparison of cumulative GDP growth increment attributable to SF and CF implementation

[Graph showing comparison]

Source: Calculations by authors, Šíkula et al., 2006

The comparison of the ex-ante and ex-post analyses shows certain correlations (Chart 8). The ex-ante analysis covered only the period of implementation, disregarding the n+2 rule. The main difference in the case of estimated impacts lies in the assumption of evenly-spread drawing of funds throughout the programming period, without the need to accelerate implementation in the
post-2013 period. For this reason, neither the effects nor the CSF multiplier were estimated beyond 2013 and are thus not presented. The estimated effects for 2013 anticipated the cumulative GDP growth increment above 14%, cumulative CSF value at 1.94 and the creation of 87,000 new jobs (at the overall unemployment rate of 8.7%).

Chart 9: Comparison of the anticipated effects of the SF and CF implementation on additional output of different sectors in 2013 based on the ex-ante and ex-post evaluation

Source: Calculations by authors, Šikula et al., 2006

In contrast to the ex-ante analysis assumptions, two key factors affected the real economy. The first factor, economic crisis, pushed the rate of unemployment up. The number of new jobs created through the implementation of SF and CF funds softened the negative impacts of the crisis on Slovakia’s overall unemployment.

The second factor was the uneven allocation of funds in time. In the first two years of implementation, the drawing of SF and CF funds was minimal, followed by a steep increase in the second half of the programming period, prompting the need to draw the remaining funds (in a considerable amount) during the n+2 period. The drawing of such a considerable volume of funds reduces the overall effectiveness of their allocation (see Radvanský and Frank, 2009).

The first of the above-mentioned factors, i.e., decline in Slovakia’s economic performance, reduced the costs and increased the effectiveness of additional resources. In other words, the real effect of SF and CF implementation was significantly higher than the assumptions used in the NSRF. The structure of effects on individual sectors developed in line with expectations, although their strength in 2013 was lower. This is due to the higher unemployment rate (14%) and lower GDP in 2013 compared to the ex-ante assumptions, as well as to the higher expected economic output in the n+2 period.
4 Results of evaluation at the national and regional level

4.1 Assessment of Cohesion Policy impacts at regional level assuming the 89% absorption rate

Description of model approach and its limitations

The impact of SF and CF implementation at the regional level was assessed using the regional econometric structural model HERMIN\(^7\) developed in Poland by the WARR\(^8\) team in long-term cooperation with the author of the methodology (J. Bradley). A detailed description of the model is provided in Annex A. The structure of the regional econometric model reflects the specificities of individual regions. In terms of this analysis, it entails the implementation of eight regional models which are mutually interlinked only at the level of aggregate statistical indicators. This is the reason why the models are lacking deeper simultaneous connection between the endogenous and inter-regional linkages. Due to this, the model apparatus is not able to fully capture the spill-over effects between individual regions. Due to the absence of linkages between regions, it is impossible to directly examine inter-regional growth effects induced by SF and CF implementation. However, the advantage of the thus designed models is that they are not that much demanding in terms of statistical input, yet, in certain aspects, their requirements go beyond the sets of data provided by Statistical Office of the Slovak Republic (see Chapter 3.2) even if simplified approach is applied. Regional disaggregation reaches the NUTS 3 functional level. The missing statistical data for the current period (2014), which are published with a delay, have been supplemented through calibration conditioned by the economic base using econometric-statistical and optimisation methods (see Annex D). The other limitations of the model include the assumption that funds are allocated according to specific priorities, which provides only an indirect link to the economic output of individual sectors. Moreover, the model contemplates only direct effects on the public sector efficiency, without quantifying alternative impacts on the public sector employment. Through analytical calibration on historical data in each region, HERMIN is able to estimate the spill-over effects between individual sectors of a particular region, which is very positive. Thanks to this assumption, the model is able to predict the development of a particular sector through multipliers also in a situation where the sector is not influenced by direct effects (e.g., industry). As regards the creation of new jobs, the model assumes that all jobs are taken up by the workforce available in the region; in other words, the model does not capture the aspect of inter-regional workforce migration, which is generally low and occurs almost exclusively in the Bratislava region. When interpreting the results, this fact must be taken into account because the model does not reflect the impact of migration on increased household income and consumption in the workforce source region.

Scenarios

The concept of the model’s simulation applications is based on three scenarios. The baseline scenario, also called benchmark scenario, describes the economic development in the context of current economic realities. This aspect represents the main difference between the ex-post

\(^7\)The main sources included the databases of Eurostat, Statistical Office of the Slovak Republic and ITMS.

\(^8\)Wroclaw Regional Development Agency (www.warr.pl)
analysis and ex-ante evaluation where the baseline scenario is developed on the assumption of zero SF and CF implementation. The baseline scenario is thus based on the actual economic development of Slovakia’s regions according to the officially published statistics, complemented with a set of data updated through regional calibration. Alternative scenario 1 describes how individual regions would develop without SF and CF implementation. The SF and CF implementation for 2007-2014 is defined as actual drawing of funds based on the indicative disaggregation of data from the ITMS. The SF and CF drawing in 2015 is based on the assumption of reaching the 89%-absorption target and an evenly spread intensity of drawing among regions. Alternative scenario 2 describes how individual regions would develop if SF and CF implementation reached 100%. Also in this case, the 2007-2014 implementation is based on reality, while the 2015 implementation represents the drawing of residual allocations in individual regions. Therefore, if these alternative scenarios are compared, the difference in the allocation occurs only in 2015. The 2007-2014 development does not influence the type of the alternative scenario. The net impact of the SF and CF on the economic development of individual regions is the difference between the baseline scenario and alternative scenario 1 or 2. The next parts of the report describe in detail the results achieved under alternative scenarios when simulating zero implementation of the SF and CF in the economy. In the Summary, in Chapters 4.1 and 4.2, and in the detailed quantification of impacts (Chapter 5), the results of the analysis are presented against the 89% absorption of the SF and CF which the government presented as the most probable. Chapter 4.3 discusses alternative impacts assuming 100%-implementation. This scenario represents the potential “maximum” effect of implementing the entire allocation. However, this scenario disregards the impact of other factors on the effectiveness of funds (e.g., structure and accrued/deferred expenditures). In developing the 2015 forecast, the input exogenous variables in the model were based on a conservative estimate, which is the same for both alternative scenarios.

Summary of results

Chart 10 illustrates the volumes of funds drawn at the 89%-absorption target. The highest volumes are in the regions of Trenčín, Prešov, Žilina and Košice. If the 89%-absorption target is to be met, we assume accelerated EU funds’ drawing in all regions of Slovakia during 2015.

The CSF multiplier represents one of the most important indicators for assessing Cohesion Policy impacts at the regional level. The indicator quantifies the effectiveness of invested funds on the generation of regional GDP. The higher the value of the multiplier, the higher the effect of EU funds (put simply, additional effect (in EUR) on GDP per euro invested from the SF and CF). The multiplier is calculated as a ratio between the cumulative GDP increments and cumulative SF and CF investments in the region. The following Chart 11 and Table 4 illustrate how the multiplier developed in individual regions under alternative scenario 1. The highest cumulative multiplier was reached in the Bratislava region. Its value increased to 3.1 in 2014 and 3.2 in 2015. In simplified terms, the multiplier shows how one euro invested from the SF

9For the sake of approximation of the pace of implementation 2015 we assumed the drawing of 35% from the total cumulating drawing in 2007-2014 in the given region.

10The difference between alternative scenarios 1 and 2 lies only in the estimated volume of EU funds to be drawn in 2015, i.e., unfinished implementation period (an ex-ante element). If the actual drawing in 2015 differs from the estimate, it should not have any significant impact on the values presented for 2014.

11Possible negative scenario was not considered.

12See, for example, Radvanský, Frank, 2010
and CF contributed to additional GDP growth expressed in euros. For 2015, this additional growth for the Bratislava region is estimated at EUR 3.2. In 2014, the multiplier in the Trnava and Žilina regions reached 2.1 and 2.3, respectively. The lowest value of the cumulative multiplier in 2014 (1.7) was reached in the regions of Prešov, Banská Bystrica, Košice and Trenčín. The region of Banská Bystrica reached the value of 1.7 also in 2015.

Chart 10: Drawing of SF and CF at the regional level, in million EUR, 89-% scenario

Source: ITMS and calculations by authors

Chart 11: CSF multipliers by individual regions

Source: calculations by authors
Assessment of Cohesion Policy Impacts on the Development of Slovakia Using a Suitable Econometric Model
Evaluation Report 2015
June 2015

Table 4: CSF multipliers by individual regions

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>0</td>
<td>2.2</td>
<td>2.5</td>
<td>2.7</td>
<td>2.6</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>TT</td>
<td>0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>TN</td>
<td>0</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>NR</td>
<td>0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ZA</td>
<td>0</td>
<td>1.2</td>
<td>1.6</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>BB</td>
<td>0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>PO</td>
<td>0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>KE</td>
<td>0</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Compared with the zero implementation scenario, investments from the SF and CF funds could create more than 124,000 new jobs in 2015. For the year 2014 the model indicates the creation of almost 79,000 new jobs. The highest number of new jobs in 2015, over 22,000, can potentially be created through SF and CF implementation in the Trenčín and Žilina regions. This increase may be due to the fact that these two regions reported the highest SF and CF implementation in nominal terms. At the same time, these two regions invested the highest volume of funds in the development of physical infrastructure connected to a sector which is fairly labour-intensive. Under this scenario, more than 20,000 new jobs could also be created in the Prešov region in 2015. The forecast for the region of Banská Bystrica is 14,000 new jobs in 2015. The lowest numbers of new jobs created in 2015 through Cohesion Policy investments will be in the Bratislava and Trnava regions where the model indicates the creation of more than 11,000 new jobs.

The 2014/2013 decline in the number of newly created jobs in the regions of Banská Bystrica, Košice, Nitra, Prešov and Trenčín was primarily due to the lower amount of SF and CF investments. The Trnava region maintained the number of the new jobs created in 2014 mainly thanks to the stabilisation in the drawing of EU funds in 2014. The 2014/2013 increase in the number of new jobs in the Bratislava and Žilina regions is attributable to the acceleration in the SC and CF drawing. We expect the number of new jobs to further increase in 2015 in all regions mainly due to the enormous expected increase in the drawing of EU funds towards meeting the 89%-target.
Chart 12: Number of new jobs created through SF and CF investments, '000 persons, 89-% scenario

Source: calculations by authors

Chart 13: Development of additional gross value added in the construction sector in individual regions, million EUR

Source: calculations by authors

The highest additional increase in gross value added created in the construction sector was recorded in the Žilina and Prešov regions where it reached more than EUR 170 million in 2014; the forecast for 2015 is EUR 309 million in the Prešov region and EUR 288 million in the Žilina region. Also the Trenčín region exceeded the threshold of EUR 100 million in the additional gross value added created in the construction sector in 2014. The lowest increase in gross value added in this sector was in the Bratislava region. In 2015, we expect the additional gross value added created in the construction sector to increase in all regions due to the nominal increase in SF and CF funded investments in physical infrastructure.
The most significant increase in the SF- and CF-induced creation of gross value added in industry was again recorded in the Trenčín region where the increase was clearly above the figures reported by other regions. The increases in gross value added in the remaining regions were comparable, except for the Banská Bystrica region where SF and CF investments may increase gross value added in industry by EUR 68 million in 2015 compared to only EUR 51 million in 2014. The increase in gross value added in industry in the Bratislava region was even lower, by EUR 16 million in 2014; our expectation for 2015 is EUR 21 million. In 2015, we expect the additional gross value added created in industry to increase in all regions due to the expected nominal increase in SF and CF investments.

Source: calculations by authors
The highest increase in the gross value added created in the sector of market services was recorded in the Bratislava region due to the increased drawing of EU funds in the region. In the regions of Žilina, Trenčín, Košice and Prešov, the additional gross value added created in the sector increased by more than EUR 200 million in 2014. Under alternative scenario 1, we expect the additional gross value added in these regions to exceed EUR 300 million in 2015, while the increase in the Bratislava region should be about EUR 620 million.

4.2 Assessing national-level impacts of the cohesion policy at 89% absorption rate

The effect of using Structural Funds and the Cohesion Fund at the national level with an 89% rate of absorption was assessed using regional econometric model HERMIN. A detailed description of the model is provided in Annex A to this evaluation report. National-level results are estimated based on partial regional-level results. Our analysis and interpretation of the results also took into consideration the outputs from the national HERMIN model, but a greater emphasis was put on the results of the regional model.

Chart 16: Gross value added at c.p., EUR million.

The cumulative CSF multiplier for Slovakia followed an upward trend. It reached a zero value in 2007 because no resources were drawn from the CF and SF. Between 2008 and 2010, it stayed around the 1.4 level. Subsequently, we observe an upward trend in the CSF multiplier that reached nearly 2 in 2014. We expect the multiplier to exceed this level in 2015.
Chart 17: Cumulative CSF multiplier for Slovakia

Source: Slovak Statistical Office and calculations by authors

The total value added follows a stable upward trend over the reporting period, with the impact of investments measured by the CSF multipliers resulting from the implementation of the cohesion policy showing a clearly growing positive effect on the creation of gross value added. In 2014, the effect of drawing of SF and CF would be slightly above 5.7%; the rate should increase to as much as 8.4% of total gross value added by 2015. A higher growth in gross value added is primarily affected by increased drawing of SF and CF in 2015. This change was primarily driven by market services and construction sectors, while the industrial sector had the lowest impact. The market services sector accounted for 50% of the change on average over the reporting period, the construction sector contributed 33% and industry 11%. Agriculture and non-market services accounted for the rest.
Chart 18/a-c: Gross value added in construction, industry and market services, current prices, EUR million

Source: Slovak Statistical Office and calculations by authors

The SF and CF implementation had the highest relative impact on the creation of gross value added in construction and market services, the weakest in the industry sector. In addition, the building of transport infrastructure led to a significant growth in output of the construction sector. If infrastructure projects had not been implemented, this sector would have seen a major drop in output. Market services, being the largest sector subject to the analysis, show the most significant direct and indirect impact driven by IT modernisation, investments in innovative services, etc. At the same time, indirect positive impacts from other sectors create a considerable portion of additional growth in this sector. A multiplier effect of an increased demand in other sectors and a growth generated by higher household demands is most prominently felt in this sector. Of the three primary sectors analysed, the industry sector showed...
the least intensive response to the impacts of the SF and CF implementation in the national economy. The key reason is that the industry is slower to adopt to a change in demand, yet this sector produces a long-term sustainable output. Therefore, its response to a change in investment demand, as well as to demand from other sectors is less intensive. We can further expect that indirect effects of spending had and will have a lesser impact on the volume of production in the industry when compared to the construction and market services sectors.

Chart 19: Development in employment in Slovakia driven by the SF and CF implementation, '000 persons

The examination of the SF and CF spending impacts on employment at the national level showed a considerably positive impact of the cohesion policy on the creation of new jobs and the number of employed persons. Without the contribution by the SF and CF, the number of the employed would have been significantly lower. The total number of the employed would have been lower nearly by 79,000 persons (which represents more than a 4% decrease in employment) in 2014, and nearly by 124,000 persons (representing a decrease in employment of almost 5.7%) in 2015 when compared to the scenario including the SF and CF funds drawing. An additional growth in employment is expected in Slovakia in 2015 primarily as a consequence of increased SF and CF spending envisaged under the 89% scenario.
Without the SF and CF spending, the employment would have responded to a shortfall in investment demand driven by the global recession to a larger extent. For Slovakia, a country with an open economy, the economic crisis also meant a significant decline in foreign demand. This decline in demand had a direct and most prominent impact on the automotive industry, in particular, one of the major drivers of Slovakia’s economic growth. Without the SF and CF spending, a cumulative effect of the crisis would have probably been more intensive and employment would have recover at a considerably slower pace in 2010 and would have been followed by a decrease in the number of the employed rather than by its stable stagnation. These effects would have indirectly been felt in the construction sector which generated a substantial portion of investments implemented in other sectors. In general, the average sustainability of jobs is estimated somewhere between 25 and 40%. Indirectly induced demand for labour roughly accounts for 50% of total demand.

13In addition to its structure, the distribution of spending in time is pivotal with respect to the sustainability of jobs. With the drawing of funds more evenly distributed, as expected for 2014, the sustainability rate was significantly higher when compared to an extreme one-off increase in the uptake expected under the presented update (see Chapter 5.13).
Labour market development in Slovakia is dependent on the economic development in individual sectors of the economy. If the SF and CF had not been implemented, the industry sector would have been the one most moderately responding, in terms of demand for labour, to a decline in investments. In 2014, the number of workers would have dropped nearly 1.6% in this sector; in 2015, the drop would be slightly above 2.1%. The employment in the industry sector is driven by the production which is sustainable in the long term, responding more moderately to a change in investment demand. Similarly, the capital intensity of production in this sector is higher than its labour intensity. As far as employment is considered, the largest beneficiary of the SF and CF spending was the construction sector (in relative terms). Without the SF and CF spending, the total number of the employed would have been down more than 18% in 2014 and more than 26% in 2015 in this sector. Despite the fact that the drawing of the SF and CF resources had the most positive impact on the employment in the construction sector, the sector’s overall employment has been falling since 2009. Demand for labour in market services would have seen a similar decline if the SF and CF spending had not been made. This sector would have employed nearly 5% less people in 2014 and just above 7% less people in 2015. This notably positive effect of the cohesion policy in the two sectors was driven by direct, as well as indirect impacts. We can observe an increase in the additional employment in 2015 in all sectors subject to evaluation. The increase is primarily caused by an enormous growth in the drawing of the SF and CF funds in 2015 driven by the assumptions under the 89% absorption scenario.

4.3 Assessing national-level impacts of the cohesion policy at 100 % absorption

The drawing of SF and CF funds in the case of alternative scenario 2, assuming a 100% absorption of resources allocated to individual regions, is shown on Chart 21.

Chart 21: SF and CF spending, EUR million, 100 % scenario

Source: ITMS and calculations by authors
However, in order to absorb 100% of total allocations, a several-fold increase in the current pace of drawing would be necessary in the last year of the programming period. The absorption of such an enormous volume of financial resources in 2015, when a real beginning of the drawing of the funds under new programming period 2014-2020 is expected, is unlikely. In 2015, the drawing of the SF and CF resources under the current 2007-2013 programming period alone would have to be twice the 2010-2014 average rate of the SF and CF drawing. On that account, this scenario is very unlikely to happen and its results indicate potential in the case of a successful, full absorption of allocated funds.

Since alternative scenario 1 (89%) and alternative scenario 2 (100%) contain different assumptions concerning the volume of the funds drawn for 2015 only, the following part of this chapter will only analyse the differences between the effects of this two scenarios for this year. First, it is necessary to illustrate the differences in the total absorption of funds. Table 5 shows the difference in allocations under alternative scenario 1 (assuming an 89% absorption in the last year of the programming period) and alternative scenario 2 (assuming the full absorption of the remaining funds in 2015). The difference in the volume of SF and CF resources absorbed in all regions would exceed EUR 1.2 billion in 2015. The largest aggregate difference between the alternative scenarios at the regional level can be seen for Bratislava and Žilina regions, where a 100% absorption would roughly bring in additional EUR 278 million. The Trenčín region is on the opposite side of the spectrum, with a difference of some EUR 25 million which indicates that the absorption of the EU funds is expected to approach a 100% level even under alternative scenario 1.

Table 5: Differences in the drawing of EU funds under alternative scenarios 1 and 2, EUR million

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>278.1</td>
<td>126.0</td>
<td>24.0</td>
<td>116.7</td>
<td>277.4</td>
<td>146.9</td>
<td>142.1</td>
<td>108.8</td>
</tr>
</tbody>
</table>

Source: calculations by authors

The spending of additional resources from Structural Funds in the economy under alternative scenario 2 will also increase the creation of gross value added, compared to alternative scenario 1, translating into an additional growth in GDP in all regions. In the case of the Trenčín region, a relatively lower volume of additionally created gross value added can be expected compared to the expected volume of additional implementation. For the remaining regions, the efficiency of additional spending of resources would be relatively higher, contributing to the creation of value added. It means that additional resources implemented under alternative scenario 2 have a potential to generate an additional value added in all regions.

Table 6: Differences in gross value added under alternative scenarios, EUR million, current prices (cumulatively for all sectors)

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>622.9</td>
<td>170.8</td>
<td>17.2</td>
<td>159.3</td>
<td>415.7</td>
<td>173.4</td>
<td>179.7</td>
<td>202.5</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Taking a more detailed look at the efficiency of additional resources under alternative scenario 2, it can be observed that their implementation would have a negative impact on the total efficiency in all regions but in Bratislava and Žilina regions where the efficiency stagnated or, respectively, slightly increased. For the Trenčín region, the additional gross value added would be lower than the volume of additionally spent SF and CF resources, indicating that this region has exceeded the limit of its absorption capacity. For other regions, the volume of additional
GDP generated by the implementation would exceed the volume of EU funds spent, but their efficiency would be lower than that of the funds spent so far. This fact indicates a non-efficiency resulting from a massive increase in the volume of the funds spent in these regions compared to previous years. When comparing CSF multipliers under alternative scenarios, a higher volume of resources spent would contribute to a higher growth in GDP in all regions. On the other hand, the values of CSF multipliers are smaller for individual regions under alternative scenario 2, due to the reduced efficiency in the implementation of the SF and CF. The only exemption are CSF multiplier values in Žilina region in which a moderate increase in efficiency is expected under alternative scenario 2. These facts indicate that the efficiency under alternative scenario 2 was lower than under scenario 1 due an enormous increased in the drawing for resources. In the case of Žilina region, however, we can state based on the results that the volume of allocated resources did not exceed the limit of its absorption capacity even under alternative scenario 2.

Table 7: Differences in CSF multipliers in the results under alternative scenarios

<table>
<thead>
<tr>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.01</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.06</td>
<td>0.16</td>
<td>-0.12</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Considering the assumptions under alternative scenario 2 are met, the model estimates show a generally more positive impact of the drawing of EU funds on employment when compared against alternative scenario 1. More than 45 000 additional new jobs would be created in 2015. The largest increase in employment would be seen in the Žilina and Bratislava regions. The Trenčín region would see the lowest growth in employment, as only some 500 additional new jobs would be created.

Table 8: Difference in employment under alternative scenarios, '000 persons

<table>
<thead>
<tr>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>9.2</td>
<td>4.5</td>
<td>0.5</td>
<td>4.8</td>
<td>11.0</td>
<td>5.2</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Source: calculations by authors

The following tables (Table 9, 10 and 11) include data comparing the results under alternative scenario 2 against alternative scenario 1. The tables illustrate the impact of the additional allocation on the gross value added in individual sectors. The most significant increase in gross value added produced in the construction sector would occur in the Žilina region for which alternative scenario 1 anticipates a relatively lower uptake of resources for infrastructure development. The Trenčín region is on the opposite end, where only a moderate additional increase in gross value added, by EUR 6 million, in the construction sector could be expected. The most significant increase in the gross value added produced in the industry sector would again be seen in Žilina region. These are, however, rather marginal effects, given the size of the industry sector. A very moderate increase would be felt in the remaining regions. The gross value added would increase by some EUR 440 million in the market services sector in the Bratislava region, representing a nearly 2.5-times higher growth compared to a region where the second highest effect would be observed, i.e., Žilina region. The highest additional effect of additionally spent resources, when comparing the two alternative scenarios, would be observed in the market services sector where the total volume of additionally produced gross value added would exceed EUR 1 billion.
Table 9: Difference in gross value added produced in the construction sector under alternative scenarios, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>54</td>
<td>44</td>
<td>6</td>
<td>51</td>
<td>156</td>
<td>61</td>
<td>88</td>
<td>65</td>
<td>524</td>
</tr>
</tbody>
</table>

Table 10: Difference in gross value added produced in the industry sector under alternative scenarios, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>7</td>
<td>18</td>
<td>2</td>
<td>15</td>
<td>36</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>114</td>
</tr>
</tbody>
</table>

Table 11: Difference in gross value added produced in the market services sector under alternative scenarios, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>441</td>
<td>86</td>
<td>7</td>
<td>74</td>
<td>179</td>
<td>80</td>
<td>64</td>
<td>101</td>
<td>1032</td>
</tr>
</tbody>
</table>

Source: calculations by authors

4.4 Comparing the results of 2014 ex-post evaluation against 2015 update

This sub-chapter describes the differences between the results contained in the 2014 Evaluation Report and the updated version which incorporates the real uptake of the EU funds in individual regions in 2014. Since there are only marginal differences in the results for the 2007-2013 period, a detailed attention will only be given to comparing the results for 2014 and 2015. The Bratislava region is an exemption in this regard, because of methodology adjustments made with respect to this region which resulted in differences in its sectoral structure. A key source of differences in the 2011-2013 period was an update to the underlying statistical data following the updates in a regional database and updated estimates of gross-up underlying data. The differences in 2014 and 2015 largely come from the difference between the actual and expected drawing rate in 2014 which has subsequently affected the drawing rate expected in 2015.

Taking a detailed look at the difference in the expected and actual drawing in 2014, the regions can be divided into two groups. The first group comprises Bratislava and Žilina regions where the actual drawing exceeded values expected at the time of the preparation of the 2014 Evaluation Report. Even though the drawing of the EU funds in the two regions was nearly EUR 100 million higher, the actual drawing was almost EUR 300 million down overall. When preparing this year’s update to the Evaluation Report, we assumed that in order to achieve an 89% absorption it is necessary to absorb approximately 35% of the regional uptake seen so far, the rate of drawing outpaced the drawing rate expected under the last year's version of the Evaluation Report in all regions (except for Košice).

The overall difference in the expected drawing of EU funds amounted to over EUR 500 million in 2015. The differences in the expected and actual drawing rate translated into its impact on the Slovak economy and individual regions.
The difference in additional GDP in 2014 when comparing the results of the 89% scenario from last year's report and the actual drawing contributed to the generation of more than EUR 200 million in the Bratislava region. In Žilina region, additional resources (EUR 31.9 million) generated EUR 19 million only; it indicates that the 2014 Evaluation Report expected a higher efficiency than the efficiency actually achieved in the region. The values of additional GDP formation expected in 2015, except for the Bratislava region, indicate a substantial decrease in the marginal efficiency of additional resources.

Table 12: Difference in EU funds uptake, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>67.5</td>
<td>-16.3</td>
<td>-102.1</td>
<td>-25.7</td>
<td>31.9</td>
<td>-57.1</td>
<td>-97.9</td>
<td>-82.4</td>
<td>-282.2</td>
</tr>
<tr>
<td>2015</td>
<td>66.8</td>
<td>53.3</td>
<td>38.5</td>
<td>73.4</td>
<td>161.8</td>
<td>101.0</td>
<td>34.3</td>
<td>-8.0</td>
<td>521.2</td>
</tr>
</tbody>
</table>

Source: calculations by authors

The lower than expected drawing of EU funds in 2014 resulted in a decrease in the creation of new jobs, approximately by 16,000 jobs, compared to the 2014 Evaluation Report. The largest decrease occurred in Trenčín and Košice regions. On the other, the higher than expected drawing of EU funds generated additional employment in Bratislava and Žilina regions. In 2015, the expected employment should be higher by nearly 9,000 overall. A positive development is expected in all regions except for Trenčín and Košice where only a slight compensation of the 2014 decrease will occur.

Table 13: Difference in GDP formation, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>231.4</td>
<td>-60.5</td>
<td>-184.0</td>
<td>-50.0</td>
<td>19.0</td>
<td>-56.9</td>
<td>-97.5</td>
<td>-194.6</td>
<td>-393.1</td>
</tr>
<tr>
<td>2015</td>
<td>245.2</td>
<td>-4.3</td>
<td>-122.4</td>
<td>45.7</td>
<td>192.1</td>
<td>74.4</td>
<td>32.4</td>
<td>-140.5</td>
<td>322.7</td>
</tr>
</tbody>
</table>

Source: calculations by authors

From the sectoral perspective, the development in the creation of the gross value added shows trends similar to those observed in GDP formation. In general, the construction sector saw a decline in the creation of the value added, especially in 2014, with a moderate growth, or a partial compensation of the 2014 losses, expected in 2015. The creation of the value added was lower than expected in 2014 (except for Bratislava and Žilina regions with the higher than expected drawing of the EU funds). Trnava, Trenčín and Košice regions are expected to record an additional decline in the creation of the gross value in the industry sector in 2015. In the remaining regions, a growth or a partial and/or full compensation of the 2014 losses are

14The total size of the difference in drawing for 2014 and 2015 compared against the 2014 Evaluation Report is not zero due to improvements in the methodology for regional disaggregation of allocations (especially the growth in the volume of expected drawing in BA and ZA).
expected. The market services sector followed a similar development trend as the construction and industry sectors in 2014. A slightly different development should occur in 2015 when all regions but Trencín and Košice are expected to achieve a higher growth than expected under the 2014 Evaluation Report.

Table 15: Difference in gross value added in construction, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>20.1</td>
<td>-24.2</td>
<td>-79.0</td>
<td>-28.2</td>
<td>2.4</td>
<td>-14.9</td>
<td>-81.4</td>
<td>-107.3</td>
<td>-312.5</td>
</tr>
<tr>
<td>2015</td>
<td>18.1</td>
<td>-8.0</td>
<td>-45.0</td>
<td>6.1</td>
<td>69.0</td>
<td>49.0</td>
<td>-9.1</td>
<td>-93.8</td>
<td>-13.6</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 16: Difference in gross value added in industry, EUR million, c.p.

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1.7</td>
<td>-21.8</td>
<td>-21.9</td>
<td>-7.4</td>
<td>4.2</td>
<td>-5.8</td>
<td>-7.9</td>
<td>-14.0</td>
<td>-72.9</td>
</tr>
<tr>
<td>2015</td>
<td>3.0</td>
<td>-23.9</td>
<td>-29.0</td>
<td>-0.8</td>
<td>27.8</td>
<td>-0.3</td>
<td>-5.4</td>
<td>-20.8</td>
<td>-49.4</td>
</tr>
</tbody>
</table>

Source: calculations by authors

The comparison of the attained values of CSF multipliers in the 2014 and 2015 evaluations under both scenarios is shown on Chart 22. A slightly lower drawing in 2014 and adjustments in regional data for the 2012-2014 period based on updated data pushed the multipliers’ level upwards in this period. A higher expected allocation of funds in 2015 has clearly indicated a decrease in their efficiency under the current evaluation. The same can be seen when comparing the scenarios under the same evaluation at an 89% and 100% absorption rate. The spending efficiency is calibrated at values until 2014 (or until 2013 in the less recent evaluation). The decrease in the actual drawing rate in 2014 and its expected sharp rise in the last year of the programming period indicate a one-off decline in the CSF multiplier growth rate by nearly 60% in 2015 compared against the previous evaluation.
Chart 22: Comparing estimated level of CSF multiplier under the current evaluation and the 2014 evaluation and both alternative scenarios

Source: calculations by authors
5 Answers to evaluation questions

5.1 What is the quantification of the impacts of the SF and CF implementation on Slovakia’s overall economic performance at the national and regional level?

Approach to evaluation

In order to assess the impact of the cohesion policy on the overall economic performance, attention was primarily given to analysing and comparing basic economic indicators comprising individual outputs from regional econometric model HERMIN. The results were then supplemented by the data obtained from aggregated national econometric model HERMIN. They are mainly data about GDP in real and market prices, total employment, wages and household consumption. Individual parameters were analysed and compared at the national and regional level.

In order to answer the question, two scenarios under the econometric model were compared. The first one, a so-called baseline scenario, is based on the actual state of affairs in which Slovakia drew financial resources from Structural Funds during the 2007-2014 period. Throughout entire Chapter 5, we assumed a faster pace of the drawing of EU funds in 2015, resulting in a total SF and CF absorption at a level of 89 % of the original allocation which was presented as Slovakia’s anticipated target during the preparation of the evaluation, as well as under the 2014 evaluation. However, it must be noted that the drawing of the EU funds would have to be 60 % higher in 2015 than in the most successful year of 2013 (see Chapter 4). An alternative scenario describes economic development in individual Slovak regions without the drawing of financial resources from the SF and CF. The difference between the two scenarios represents a net effect of the drawing of financial resources from the SF and CF.

Analysis and its results

The results of the econometric model indicate that the drawing of financial resources from the SF and CF has a considerable positive impact on economic development throughout the entire implementation period. An additional growth in Slovakia’s GDP begins to be felt from 2009; an additional cumulative growth in GDP formation in current prices is expected at a rate of 5.3 % in 2013, 5.6 % in 2014 and 8.3 % in 2015. It is a share of GDP in a given year including the EU funding against the scenario excluding the EU funding (Chart 23). Given the lower than originally expected drawing of the SF and CF resources, the difference in nominal GDP is 0.7 p.p. lower in 2014. On the other hand, an immediate effect of the expected massive drawing in 2015 would bring a substantial contribution to an additional growth in GDP, exceeding the original estimate contained in the 2014 evaluation. A larger difference in 2015 is also caused by the fact that more evenly distributed drawing would increase the level of nominal GDP in 2014.

An additional cumulative GDP formation in current prices in 2015 resulting from the drawing of EU funds is expected at a rate of 30 % of GDP (16.7 % in 2013 and 22.3 % in 2014). For the sake of clarification, it is an amount of GDP generated by the drawing of the EU funds throughout all periods of implementation (a purple-shaded area in Chart 23). In other words, the drawing of the SF and CF funds is expected to contribute additional 30 % of GDP for the entire
period of their implementation. The difference in the GDP growth is determined by the difference in GDP produced in a given year with and without the EU spending, the second value (cumulative GDP formation) gives the sum of these values in the implementation period. Due to the SF and CF implementation, a year-on-year real growth in GDP is 0.9 of a percentage point higher on average during the 2009-2015 period. The difference in GDP in current prices under the baseline and alternative scenario exceeds EUR 5.8 billion in 2015 (the 2013 difference is EUR 3.6 billion and the 2014 difference is EUR 3.9 billion).

Chart 23: SF and CF effect on GDP at the national level in EUR million at current prices (left axis) and in % (right axis)

Source: calculations by authors

Table 18 shows the effect of the additional real growth in GDP at the regional level resulting from the drawing of financial resources from the SF and CF based on the results of regional econometric models HERMIN. In 2007 and 2008, no significant growth in GDP was observed, mainly due to the minimum level of drawing of financial resources from the SF and CF. More distinct growth in GDP can be observed from 2009 when the actual drawing of financial resources from the SF and CF also accelerated. Between 2009 and 2014, the most prominent additional growth in GDP driven by the uptake of EU funds was observed in the Trenčín, Žilina and Prešov regions. The Trenčín region saw the largest growth, by 2.4 p.p. in 2013, mainly due to the impacts of infrastructure projects. A growth between 0.5 p.p. and 1.1 p.p. was annually observed in the 2009–2014 period for the whole of Slovakia. The real drawing of the SF and CF in 2015 will be of key importance as it has a potential to bring an additional growth of as much as 4.5 p.p. across Slovak regions. (Table18).
Table 18: Difference in real GDP growth driven by the drawing of SF and CF, in p.p.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.9</td>
<td>1.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.8</td>
<td>1.3</td>
<td>1.5</td>
<td>0.0</td>
<td>0.3</td>
<td>2.0</td>
<td>0.7</td>
</tr>
<tr>
<td>TN</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>2.2</td>
<td>0.0</td>
<td>1.6</td>
<td>2.4</td>
<td>0.1</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>NR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.9</td>
<td>1.7</td>
<td>1.3</td>
<td>-0.3</td>
<td>0.0</td>
<td>2.4</td>
<td>0.7</td>
</tr>
<tr>
<td>ZA</td>
<td>0.0</td>
<td>0.0</td>
<td>2.4</td>
<td>2.9</td>
<td>0.6</td>
<td>1.2</td>
<td>0.2</td>
<td>1.5</td>
<td>4.3</td>
<td>1.5</td>
</tr>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>2.4</td>
<td>0.4</td>
<td>1.5</td>
<td>0.2</td>
<td>-0.4</td>
<td>3.9</td>
<td>1.1</td>
</tr>
<tr>
<td>PO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>2.2</td>
<td>3.0</td>
<td>1.9</td>
<td>1.1</td>
<td>-0.8</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>KE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
<td>0.9</td>
<td>-0.8</td>
<td>2.7</td>
<td>0.8</td>
</tr>
<tr>
<td>SK</td>
<td>0.0</td>
<td>0.1</td>
<td>0.9</td>
<td>1.4</td>
<td>0.9</td>
<td>1.2</td>
<td>0.7</td>
<td>0.3</td>
<td>2.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Source: calculations by authors

At the regional level, the largest difference in GDP formation driven by the SF and CF spending is observed in Trenčín and Žilina regions (14%). A higher than 10% difference in growth is also expected in the Prešov region (13%). Given the more evenly distributed EU spending compared against the original assumptions, all these regions posted a difference in GDP formation around the level of 9% in 2014 (Chart 24). On the other hand, the Bratislava region shows a difference in growth, driven by the EU spending, just above 4% in the 2007-2015 period; it is largely caused by the size of the region’s GDP and the volume of the SF and CF financial resources drawn, which only increased more substantially in 2014.

Chart 24: Additional cumulative GDP growth driven by the drawing of SF and CF, in %, current prices

Source: calculations by authors

Thanks to the drawing of financial resources from the SF and CF, a higher GDP growth was observed each year when compared to a projected development without the SF and CF spending. In the crisis year of 2009, Slovakia’s GDP would have dipped additional 0.9 of a
percentage point, with a year-on-year decrease in GDP at a rate of 6%. Slovakia’s GDP grew 4.1% in 2010, with the contribution from the drawing of financial resources from the SF and CF representing 1.4 percentage points. A relative deceleration in drawing in 2014 with expected substantial growth in 2015 would result in a considerable growth in GDP, with the additional effect of the SF and CF spending amounting to as much as 2.6 p.p. Growth forecasts presented by a majority of institutions do not envisage such a strong increase and anticipate a higher rate of unspent SF and CF resources in 2015.

Chart 25: Estimated real growth in GDP with and without SF and CF, in %

Source: calculations by authors

Chart 26 shows additional employment in Slovakia by individual sectors generated by the drawing of financial resources from the SF and CF. A total additional employment was just below 79 000 jobs in 2014; in 2015, a one-off shock of massive drawing should create additional 50 000 new jobs which, however, seems not very likely, due to a limited labour market supply with a necessary structure. The sector of market services shows the highest share of additional employment. The construction sector followed the same growth path as the services sector until 2010 when the growth in additional employment in construction decelerated. The construction sector created over 25 000 jobs until 2014 due to a slight deceleration in SF and CF spending on infrastructure compared to 29 000 new jobs expected to be created in this period. A total of 45 000 jobs should be supported in the construction sector until 2015 backed by the drawing of Structural Funds. The industry sector maintains the slowest but stable pace of creating new jobs. This sector created more than 8 000 additional jobs until 2014 due to the drawing of financial resources from the SF and CF. In 2015, more than 10 000 jobs should be created. This slower growth rate is caused by weaker direct links between the industry sector and the drawing of financial resources from the SF and CF. Driven by spill-over effects among sectors and its strong links to other manufacturing sectors, making market services grow indirectly along with all sectors, the market services sector shows the highest additional employment. This sector created 45 000 additional jobs until 2014 due to the drawing of financial resources from the SF and CF. In 2015, the market services sector is expected to

15 See, for example, the monthly Eastern Europe Consensus Forecast, London.
employ nearly 70 000 additional persons compared to a situation without the drawing of financial resources from the SF and CF.

Chart 26: Additional employment in Slovakia driven by the drawing of SF and CF, '000 persons

![Chart showing additional employment in Slovakia](chart.png)

Source: calculations by authors

At the regional level, the highest number of new jobs is expected in the Trenčín, Žilina and Prešov regions where more than 20 000 new jobs might be created until 2015. The Banská Bystrica region is next with nearly 14 000 jobs. At the planned 89% absorption rate more than 10 000 jobs are expected to be created in all Slovak regions.

One of the limitations of the HERMIN model is that it does not cover spill-over effects among individual regions. It means that the model fails to capture effects of additional employment among individual regions. In addition, the model does not expect that a new job will be filled by a person from another region. Therefore, the possibility of filling a new job, for example, in the construction sector in the Trenčín region by an employee from another Slovak region needs be taken into consideration. The regional econometric model HERMIN does not explicitly cover this possibility.
Household consumption indirectly indicates the impact of the SF and CF on the standard of living of households which may differ from the created GDP per capita. To that end, monitoring this indicator should be a priority from the cohesion and economic policy perspective. An increased household consumption as the result of a net effect of the drawing of financial resources from the SF and CF was observed as late as 2009. Subsequently, a more distinct growth in additional household consumption was observed across all regions in 2010, including due to the increased SF and CF spending and creation of new jobs.

From 2010 on, household consumption has followed an upward trend, but at a somewhat slower pace nearly in all regions. The rise in household consumption is primarily driven by higher employment observed in all regions. The largest additional household consumption was recorded in the 2007-2015 period in the Žilina, Trenčín and Bratislava regions. In the Bratislava region, having a relatively low volume of funding and number of new jobs created, this growth is caused by the type of jobs with wages above Slovakia’s average. The smallest increase in household consumption driven by the drawing of financial resources from the SF and CF was observed in Nitra and Trnava region. Owing to an increased pace of drawing of the EU funds, we expect household consumption to accelerate by the end of 2015.
Chart 28: Growth in household consumption driven by SF and CF spending, EUR million

Source: calculations by authors

Affected by the drawing of financial resources from the SF and CF, cumulative household consumption rose 7.6% in the 2007-2015 period. The rise in consumption is primarily driven by increased employment but a growth in average wage also contributed to this development. The development in household consumption shows regional differences. The largest cumulative growth in household consumption of 12% was observed in the Trenčín region. The second largest growth in household consumption compared against the no-drawing scenario is expected to occur in Žilina region at 11.4%. Nitra region has the lowest expected cumulative household consumption, staying below 6%. The Bratislava region shows a low relative increase in consumption caused by a significant difference in the values of household consumption in this region. Affected by the drawing of financial resources from the SF and CF, household consumption increased in individual regions, thus again contributing to the mitigation of the impacts of the economic crisis on economic growth.

Table 19: Growth in household consumption driven by SF and CF spending – cumulatively for 2015

<table>
<thead>
<tr>
<th>Year</th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>6.6%</td>
<td>6.8%</td>
<td>12.0%</td>
<td>5.5%</td>
<td>11.4%</td>
<td>6.5%</td>
<td>7.3%</td>
<td>5.9%</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Source: calculations by authors

The average wage was positively affected by the drawing of financial resources from the SF and SF especially in the 2011-2015 period. The average wage in Slovakia should increase by EUR 13 in 2015 when compared to the scenario without the SF and CF spending, accounting for a rise by 1.2%. The highest growth is expected in the Trenčín region where the average wage should be up nearly EUR 30, or 2.9%. A higher than EUR 20 increase in the average wage should occur in the Banská Bystrica, Bratislava and Žilina regions. A growth below Slovakia’s average was observed in the Trnava, Prešov and Nitra regions where the average wage should rise EUR 10, or 1%. The growth in wages was not among the SF and CF objectives and represented not very significant yet positive effect of the drawing of the EU funds.
Main findings

- The real drawing in 2014 led to the effects more evenly distributed among the regions than expected under the 2014 evaluation report. The overall effect was slightly lower than expected. Model calculations indicate a possible substantial effect of the additional uptake under the 89% scenario, but unlike the situation when the spending is more evenly distributed in time we may expect problems with regions' absorption capacities and a lower efficiency rate in the case of a one-off shock increase in investments.

- The impacts of the drawing of financial resources from the SF and CF in the 2007-2015 period were analysed using regional econometric model HERMIN. The difference between the two scenarios was identified as a net effect of the uptake of financial support.

- The drawing of financial resources from the SF and CF contributed to a higher GDP growth between 2009 and 2014, in particular, having thus helped to mitigate the consequences of the crisis on the Slovak economy.

- Due to the use of SF and CF resources, we estimate a considerable additional cumulative growth in GDP, at a level of 8.3% in 2015. This additional growth should be backed by the creation of more than 120,000 additional jobs in 2015, namely in market services and construction. The industry sector played largely a supportive role in the drawing of resources from the SF and CF. The growth in the construction sector was primarily driven by significant financial allocations for the building of physical infrastructure. The market services sector posted the highest growth across all regions.

- Additional differences in GDP growth have been proved in all regions. The highest growth was observed in the Žilina, Prešov and Trenčín regions in which the largest financial allocations on infrastructure projects were concentrated. The lowest difference in GDP formation without the SF and CF implementation of 4% was recorded in the
Bratislava region. Driven by increased employment and growth in average wages, household consumption followed an upward trend.

- Affected by the drawing of financial resources from the SF and CF, household consumption increased in individual regions, thus again contributing to the mitigation of the impacts of the economic crisis on economic growth. It is evident that households would have faced a more complicated situation if no SF and CF spending had been made.

Answer to the question

What is the quantification of the impacts of the SF and CF implementation on Slovakia’s overall economic performance at the national and regional level?

Driven by SF and CF spending, Slovakia's average annual real GDP growth will be by more than 0.9 p.p. higher for the 2007-2015 period than it would be under a no-drawing scenario. A cumulative real growth in GDP is expected at a level of 8.3% in 2015 (the difference against real GDP value in 2015). Nearly 79,000 additional new jobs were created until 2014 when compared to a no-drawing scenario, namely in the market services and construction sectors. For 2015, we expect over 120,000 additional new jobs be created thanks to the drawing of funds available under the cohesion policy. The highest SF and CF driven growth was observed in the Žilina, Prešov and Trenčín regions. The Bratislava region saw the lowest growth, due to a low weight of the funds spent to the volume of GDP. The drawing of financial resources from the SF and CF had a positive impact both on the overall economic development and on individual sectors of the national economy. A relative slowdown in the drawing of the EU funds in 2014 and its expected significant increase in 2015 may bring along substantial positive effects; model calculations also identify possible limitations of this scenario.

5.2 What are the impacts of SF and CF implementation on competitiveness of Slovak regions in the reporting period?

See Chapter 5.4.

5.3 Which factors determine and increase competitiveness in individual Slovak regions?

See Chapter 5.4.
5.4 How much have the SF and CF contributed to increasing competitiveness of Slovak regions?

Approach to evaluation

The very concept and definition of competitiveness are broadly discussed in literature. Dijkstra (2011) defines regional competitiveness as the ability to offer an attractive and sustainable environment for firms and residents to live and work. Filó (2007) defines competitiveness as the ability to compete, to win and retain a position in the market, to increase market share and profitability, and eventually to consolidate commercially successful activities. The World Economic Forum defines national competitiveness as a set of institutions, policies and factors that determine the level of productivity of a country (Schwab and Sala-I-Martin, 2012; Schwab and Porter, 2007). Meyer-Stamer (2008) defines competitiveness of a region as its ability to generate high and rising incomes and improve the livelihoods of the people living there.

For quantitative assessment of the impacts of the cohesion policy on Slovakia’s competitiveness using a macroeconomic model, the unit labour cost per employee indicator (in EUR) and its impact on labour productivity per employee will be considered.

Since, from the analytical point of view, the outputs from the model are limited to two indicators only, it is necessary to use additional data relevant to assessing competitiveness at the national and regional level. For the purposes of evaluating the competitiveness development at the national level, information from the World Bank’s Doing Business (a report evaluating the business environment as an important factor of competitiveness) and from the World Economic Forum’s Global Competitiveness Index were used.

In order to assess development in regional competitiveness, the model outputs will be supplemented by a Regional Competitiveness Index (RCI) published by the European Commission. Published annually since 2010, the RCI is a relatively new instrument used to assess regional competitiveness. The Regional Competitiveness Index determines the order of NUTS 2 regions in the EU-28.

The set of the indicators used is a combination of modelled estimates (hard data) and data in the form of global competitiveness reports that provide an overview of Slovakia's position in competitiveness rankings and its development over time. Using this type of data is also essential in view of the fact that statistical indicators alone do not provide a comprehensive picture of all changes in competitiveness. The reason is that competitiveness is affected not only by actual changes in the structure of individual sectors, labour market, science, research and innovation, but also by microeconomic factors such as the quality of regulatory environment, business conditions, legislation, rule of law, quality of institutions, etc.

Analysis and results

Based on the data published by the World Bank and World Economic Forum, we can observe that Slovakia’s ranking under both monitored indicators has been continuously deteriorating since 2007 (chart 30).

16 For the evaluation purposes, the question also covers the competitiveness issue in relation to question 5.2 and 5.3.
According to the World Economic Forum’s most recent Global Competitiveness Report 2014-2015, Slovakia ended up 75th of 144 countries subject to evaluation. Over the past three years, Slovakia’s position worsened by four places. Since 2007, Slovakia fell 39 places in the ranking. A decline was observed under all sub-indicators (Chart 31). Slovakia faced the sharpest decline primarily in the quality of institutions, labour market, innovation, macroeconomic environment, business sophistication, higher education and training, and infrastructure. Judging by Slovakia’s position in this ranking, we can observe that, compared to other countries in the world, Slovakia has lost dynamics in the development of factors of competitiveness.

17 The substantial improvement seen in the 2015 Doing Business index is caused by a change in methodology. Taking a closer look at the structure of individual components of the index reveals stagnation rather than an improvement in Slovakia's position.
In the 2015 edition of the World Bank’s regular Doing Business report, Slovakia ranked 37th18, down 11 compared to 2007. The sharpest year-on-year decline was identified in the Doing Business 2012 report under which Slovakia lost 7 places on the previous year. Factors having the most negative impact on Slovakia’s Doing Business ranking include registering property, paying taxes, enforcing contracts and starting a business.

18A partial change was made in the methodology and individual indicators making up the Doing Business during the reporting period. Slovakia’s substantial fall in the ranking is not attributable the change in the methodology of index calculation. Countries that have long been leaders in the ranking are able to ensure the necessary quality of their business environment and promptly respond to changes in external factors in the long term.
In order to identify regional competitiveness, the European Commission (DG JRC and DG Region) prepared a Regional Competitiveness Index in 2010 and 2013. It is a composite index that maps economic performance and competitiveness at the level of NUTS 2 regions within the EU. The final ranking of individual regions is determined by their scores under individual composite indicators. The index combines several sub-indicators that assess individual aspects of competitiveness in 262 NUTS 2 regions.

In the 2013 regional competitiveness report, the Bratislava region ended up 78th, followed by Western Slovakia in the 191st, Central Slovakia in the 216th and Eastern Slovakia in the 229th place. This NUTS 2 region ranking clearly proves the dominant role of the Bratislava region as the most competitive region in Slovakia (though its final ranking among all EU regions cannot be considered satisfactory). Other Slovak regions ended up in the bottom part of the ranking.

The impact of the drawing of financial resources from the SF and CF on competitiveness is limited due to the structure and volume of funds spent in areas that are key drivers for increasing competitiveness (research and development, innovation, education, infrastructure). The SF and CF spending contributes to removing the infrastructural debt in the Slovak economy and creates conditions for development in science, research and innovation, but the effects of such investments are only felt over the long term. Factors limiting a more dynamic growth in competitiveness primarily involve deterioration in the quality of domestic business environment, functioning of institutions, existing system of education and training, macroeconomic environment and other factors that are beyond direct control of cohesion policy interventions and require a concept-driven and long-term approach under the economy policy.

Source: World Economic Forum (2015), calculations by authors

19 More details about the methodology can be found at http://publications.jrc.ec.europa.eu/repository/handle/111111111/13666
20 The index is a relatively new tool for comparing economic performance of EU regions. Complete time series for the index are, therefore, not available.
Development in unit labour costs in relation to competitiveness at the national and regional level

Unit labour costs are measured as the value of labour costs per unit of value added, i.e., what is the cost of labour per euro produced in the national economy. If the growth in nominal wages exceeds growth in the value added, unit costs increase, resulting in a decline in competitiveness caused by a higher price of input factors of production. Since the costs of labour are an important determinant of production, policy-makers across the Euro Area have often stressed a so-called golden rule which says that unit labour cost “should not increase faster than ECB inflation target of 2 percent” (Collignon, 2012). It should also be noted that Slovakia, as a small open economy, was attractive to foreign investors over the past decade mainly due to its low labour costs and qualified labour force.

Chart 33: Unit labour costs with and without SF and CF spending

Source: Slovak Statistical Office and calculations by authors

Unit labour costs showed a sharp increase in Slovakia at the beginning of the reporting period until 2009. This development was caused by a steep economic growth which significantly boosted a growth in nominal wages at the time of economic upturn. Due to the impacts of the global economic recession, labour costs fell in 2010, albeit for a short time, having recovered to the 2009 level (approximately 42 euro cents in labour costs per euro of production) in the subsequent years. A trend without significant swings was typical of the entire period from 2009 until the end of the reporting period. A growth in unit labour costs in 2014 and 2015 is mainly caused by economic recovery. In terms of unit labour costs, the drawing of financial resources from SF and CF had a positive impact on competitiveness at the national level. In 2014, unit labour costs are nearly 0.6 % lower compared to the scenario excluding the drawing of the SF and CF funds. They should be lower by 1 % in 2015.
Regional competitiveness followed a pattern different to that observed in the development at the national level. The drawing of financial resources from the SF and CF had an insignificant impact (measured by unit labour costs) on competitiveness in the Bratislava region. In all aforementioned regions, the unit labour costs followed different trends in the reporting period. The largest growth in all the regions could be seen between 2007 and 2009. They slightly fell in the subsequent years when they mostly returned to their pre-crisis levels. The Trnava, Nitra and Banská Bystrica regions recorded a moderate increase in competitiveness (measured by unit labour costs) caused by the SF and CF driven growth in the value added outpacing that of wages.

Source: Slovak Statistical Office and calculations by authors
A positive impact of the drawing of financial resources from the SF and CF on price competitiveness (measured by labour costs) was observed in Trenčín, Košice, Prešov and Žilina regions. This positive trend was mostly felt in the Prešov region where the impact of the EU funding on the growth in price competitiveness has ranged between -1.14 % and -3.63 % since 2010. A similar, albeit weaker effect is observed in Žilina region where the impact of the EU funding on the growth in price competitiveness has ranged between -1.33 % and -2.61 %. In the Trenčín region, it moved between -0.45 % and -1.35 %, while in Košice it was -0.59 % to -1.35 %.

Source: Slovak Statistical Office and calculations by authors
Labour productivity

Another important factor of a region’s competitiveness is labour productivity per employee. Labour productivity is a standard indicator of competitiveness, supplementing the unit labour costs indicator. Labour productivity is measured as a value added produced in a certain region per employee.

The drawing of financial resources from the SF and CF contributed to a growth in labour productivity in all Slovak regions. The Bratislava region has the highest labour productivity, despite experiencing one of the weakest impacts of the drawing of financial resources from the SF and CF on productivity. It is primarily caused by the existing high level of productivity, as well as by a relatively small volume of the EU funds drawn in this particular region at the beginning of the 2007-2013 programming period.

The strongest growth in labour productivity driven by the drawing of financial resources from the SF and CF was observed in the Trenčín, Prešov, Žilina and Košice regions. The weakest effect on labour productivity was felt in the Nitra, Trnava and Banská Bystrica regions. The effect shows a stable upward trend in all eight Slovakia’s regions. Taking into account the previous development, we can expect a positive growth in labour productivity in 2015, too, which will have a positive impact on the competitiveness of individual regions, as well as of the entire Slovak economy. The effects of the drawing of financial resources from the SF and CF on labour productivity in individual regions are shown on the following charts.
Chart 36a-h: Labour productivity by individual regions with and without SF and CF spending, in EUR ‘000, current prices
Main findings

- Based on Slovakia’s ranking under the World Economic Forum’s Global Competitiveness Index, we can observe that Slovakia has encountered a massive decline in a majority of key aspects of competitiveness since 2007.
- Key factors contributing to this development involve unsatisfactory development in the quality and functioning of institutions, labour market, low innovation performance,
insufficient and incomplete infrastructure, macroeconomic environment and education system.

- Therefore, the impact of the cohesion policy on boosting competitiveness was largely overshadowed by developments in other factors on which the drawing of financial resources from the SF and CF has a limited effect only. It means that the drawing of financial resources from the SF and CF has only a marginal impact on competitiveness which is influenced by applicable legislation and economic policy to a much larger degree.

- Given the structure of expenditure (answer to question 5.8), with the highest share of expenditure spent on infrastructure, for most of Slovakia’s regions we can state that, notwithstanding all other positive impacts of the SF and CF implementation, the effect of the SF and CF spending on national competitiveness is limited for the following reasons:
 - The long-term underfunded science, research and innovation sector uses the allocations under the current programming period mainly to complete and modernise its infrastructure. Any positive effects of the drawing of SF resources on competitiveness in this particular sector can only be expected in the long term. It would be equally necessary to increase national R&D expenditure which has long been one of the lowest of all EU-28 countries.
 - Investments in transport infrastructure create conditions for a better intra-regional and inter-regional mobility. Given an extremely slow pace of construction works, this effect is limited to some Slovak regions only.

- Unit labour costs did not constitute a crucial factor of change in competitiveness in the reporting period, especially on the national level. A positive impact of the drawing of financial resources from the SF and CF on price competitiveness (measured by labour costs) was observed in the Trenčín, Košice, Prešov and Žilina regions. The drawing of financial resources from the SF and CF had a slightly positive impact on competitiveness (measured by unit labour costs) in the Trnava, Trenčín and Banská Bystrica regions. No significant impact of the SF and CF spending on unit labour costs was observed in the Bratislava region.

- The effects of the drawing of financial resources from the SF and CF had a positive impact on labour productivity in all Slovak regions. The strongest impact was felt in Trenčín, the weakest in Trnava.

Answer to evaluation question

What are the impacts of the SF and CF implementation on competitiveness of Slovak regions in the reporting period?

As far as competitiveness is concerned, we can observe that the drawing of financial resources from the SF and CF contributed to a growth in labour productivity across all regions, with the strongest effect felt in the Trenčín region and the weakest one in the Trnava region. In terms of unit labour costs, the drawing of financial resources from the SF and CF had a positive impact on competitiveness at the national level. The effects of the SF and CF spending moved between 3.63 % and 0.07 % in the reporting period. The effects of the EU funds spending on competition (measured by unit labour costs) at the regional differed. While the Bratislava region saw no significant impact on its unit labour costs, the EU funds spending showed positive impacts in the remaining regions.
Factors contributing to Slovakia’s poor performance in competitiveness rankings especially involve areas which are, to a large degree, only partially affected by the cohesion policy interventions. It means they depend on the national economic policy and on measures implemented at the level of regional and local authorities.

Which factors determine and increase competitiveness in individual Slovak regions?

Key factors boosting competitiveness in individual regions include:

- Quality of institutions providing public services to citizens and businesses (law enforcement and length of judicial proceedings, trust in political system, protection of ownership rights and intellectual property, level of corruption, independence of the judiciary, efficiency of public expenditure)
- Developed transport infrastructure (road, railway, water-borne, air-borne)
- Good macroeconomic environment (stable price level, public debt level)
- Quality of individual levels of education system
- Scope of available electronic services and access to internet connections
- Labour costs (cost and/or price competitiveness)
- Quality and transparency of tax system
- Labour market efficiency and flexibility
- Location of sectors with a high value added which enhances the capacity of a region to attract highly skilled labour

How much have SF and CF contributed to increasing competitiveness of Slovak regions?

Based on the achieved results, it can be observed that the SF and CF implementation positively contributed to boosting competitiveness in some of its aspects. However, given a large number of external factors influencing Slovakia’s competitiveness on international markets, the position of its regions has rather deteriorated, while it is impossible to accurately quantify the contribution of Structural Funds to their competitiveness.

5.5 What are the impacts of the SF and CF implementation on Slovakia’s real convergence towards the EU average?

See Chapter 5.6.

5.6 What are the prospects of the rate of Slovak economy’s real convergence until the end of the 20007-2013 programming period (taking into account the n+2 rule), i.e., by the end of 2015?

Approach to evaluation

Economic development is usually compared using a performance indicator index and price level of a country per population, i.e., GDP per capita at purchasing power parity (PPP). Comparing
the development in GDP per capita at PPP against the average development in the EU-28 describes the rate of real convergence towards the EU average. Over the years, the real convergence has been expressed relative to the actual number of EU Member States. Before the 2004 enlargement, it was given in relation to the EU-15 average, afterwards it was EU-25, and EU-27 average in 2007. The indicators were last re-adjusted in 2013 after the EU had enlarged to include 28 Member States. Two development scenarios will be compared (one at 89% absorption and one excluding the SF and CF funding). Due to uncertainties surrounding economic development and delayed publication of indicators at PPP (the last published data are from 201121), the calculations until 2014 are described as a forecast, while the data for 2015 are considered an outlook which is likely to have a lower level of accuracy.

This average value is also used to measure real convergence at the regional level. EU’s regional and cohesion policies are applied at the NUTS 2 level (four regions in Slovakia), with a threshold of efficient support in the regions within the EU set to achieving 75% of EU average. Evidently, this threshold is adjusted slightly downwards with each round of EU enlargement because new Member States usually fall short of the average level. In response to the convergence questions (sub-chapters 5.5 and 5.6), the chapter will address the impact of the SF and CF on convergence at the national and regional level broken down to NUTS 2 and NUTS 3 levels (self-governing regions).

There are several approaches fit to measure the rate and intensity of convergence. The two most suitable are beta- and sigma-convergence. The beta-convergence is suitable to estimate a time period of convergence between regions, but only occurs provided that a less advanced region grows faster than a stronger region in the long term. Nevertheless, real convergence does necessarily not have to occur. The sigma-convergence is based on analysing the development in the dispersion of a real per capita income between individual regions. If this indicator falls, convergence increases. This approach usually takes into consideration multiple factors, their number depends on the level of latitude (number of regions). Given the insufficient number of regions in Slovakia (8), the impact on regional convergence will be measured using a sigma coefficient (measuring the change in dispersion)22.

Analysis and its results

Over the past two decades, Slovakia underwent a robust economic transition; after its economic performance dropped one-third in early 1990s, the country has been trying to catch-up with the average level of advanced EU economies. In 2000, the real convergence in the Slovak economy only slightly exceeded 50% of EU-28 average. Following its accession to the EU, Slovakia saw a sharp rise in real convergence, from 57% to 72% of EU average, in the period of economic upturn (2004-2008). In terms of the relevance of its volume, the drawing of financial resources from the SF and CF had no significant impact on the rate of convergence before 2009. In other words, the drawing of financial resources from the SF and CF only affected the real convergence at the time of economic crisis.

21Convergence indicators at the NUTS 2 level were updated for 2012 and 2013 according to ESA 2010 and can be found in Eurostat News Release 90/2015 of 21 May 2015. Due to the late publication of these data, the need to measure convergence at the NUTS 3 level and the methodology applied (ESA95), we kept estimates in their original amounts. Nevertheless, there are only minor differences in the convergence rate of NUTS 2 region according to the estimate and according to statistical reporting.

22Methodologies used to measure convergence are described in more details for example in Buček et al., 2011.
Under the baseline scenario (taking into account the effect of the SF and CF spending), Slovakia’s real convergence towards the EU average did not stop in this period, either, even though it only rose moderately when compared to the previous development. A higher rise in convergence between 2008 and 2015 occurred in 2011 only but is largely attributable to stagnation of other EU countries rather than to a stronger economic growth in Slovakia. Following its accession to the EU, Slovakia posted an average year-on-year increase in convergence at a level of 4 p.p. in the 2004-2008 period. For the 2008-2015 period, the baseline scenario estimates an average year-on-year increase in Slovakia’s convergence at a level of 0.7 p.p.; it means that the long-term moderate convergence is achieved even during this period. The alternative scenario (excluding the SF and CF spending) estimates a zero growth in Slovakia’s real convergence towards the EU average (-0.1 p.p.), with a negative convergence growth reported in a number of period (see Chart 37). An important factor in terms of convergence will be the impact of the actual drawing of funds in 2015. While in 2013 negative convergence (the second post-crisis bottom of the economic growth under the W scenario) occurred despite the highest volume of the funds drawn, in the amount of EUR 1.65 billion, convergence was on a slightly positive path in 2014 due to a higher growth in the economy. If the 2015 drawing was successful, the convergence rate could slightly increase (as much as 2 p.p.).

Chart 37: Model comparison of GDP per capita at PPP development compared to the EU-28 average under scenarios with and without the SF and CF spending (2012-2013 forecast, 2014-2015 outlook)

Source: calculations by authors

Looking at the convergence towards the EU average at the regional level, we can observe significant regional disparities measured in GDP per capita at PPP. Under both scenarios (Tables 14 and 15), a considerable imbalance in the intensity of convergence of individual regions occurs. The Bratislava region posts a strong growth in GDP per capita at PPP under both scenarios, creating the main convergence potential of the Slovak Republic (as one of the ten strongest NUTS 2 regions in the EU). It is caused by its economic strength and its ability to generate, to a large degree, growth impetuses towards neighbouring regions, as well as by the fact that a portion of the Bratislava region’s output is generated by people arriving for work
from other regions who account for a quarter of the region's workforce. Therefore, a portion of per capita GDP is generated by the workforce not included in the population of the Bratislava region, which positively affects the resulting values of GDP per capita at PPP: Nitra region was the only one region with a more considerable contribution to regional convergence (above Slovakia's average). The baseline scenario also shows a positive growth in convergence in the Žilina and Prešov regions. The regions of Trnava, Trenčín and Košice showed a moderate growth or stagnation in the convergence process. The Banská Bystrica region saw a decline in real convergence (albeit marginal) also under the scenario including the drawing of the SF and CF.

Table 20: Development in GDP per capita at PPP compared against the EU-28 average at the national and regional level - scenario including SF and CF spending (e - estimate, f - forecast) in %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SK</td>
<td>68</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>75</td>
<td>76</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>BA</td>
<td>160</td>
<td>167</td>
<td>178</td>
<td>177</td>
<td>187</td>
<td>183</td>
<td>187</td>
<td>187</td>
<td>192</td>
</tr>
<tr>
<td>TT</td>
<td>81</td>
<td>83</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>85</td>
<td>82</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>TN</td>
<td>62</td>
<td>66</td>
<td>65</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>66</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>NR</td>
<td>56</td>
<td>61</td>
<td>62</td>
<td>61</td>
<td>67</td>
<td>67</td>
<td>65</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td>ZA</td>
<td>57</td>
<td>63</td>
<td>63</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>BB</td>
<td>50</td>
<td>55</td>
<td>53</td>
<td>54</td>
<td>53</td>
<td>56</td>
<td>55</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PO</td>
<td>37</td>
<td>42</td>
<td>52</td>
<td>41</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>KE</td>
<td>56</td>
<td>60</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>60</td>
<td>59</td>
<td>60</td>
<td>61</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Compared against the convergence development under the scenario excluding the SF and CF spending (Table 15), it can be observed that the real convergence would only occur in Bratislava and Nitra regions. The indicator would drop 1 to 5 p.p. in the 2008-2015 period in all other Slovak regions.

Table 21: Development in GDP per capita at PPP compared against the EU-28 average at the national and regional level - scenario excluding SF and CF spending (e - estimate, f - forecast) in %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SK</td>
<td>68</td>
<td>72</td>
<td>72</td>
<td>71</td>
<td>73</td>
<td>73</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>BA</td>
<td>160</td>
<td>167</td>
<td>177</td>
<td>175</td>
<td>185</td>
<td>180</td>
<td>183</td>
<td>180</td>
<td>184</td>
</tr>
<tr>
<td>TT</td>
<td>81</td>
<td>83</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>81</td>
<td>79</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>TN</td>
<td>62</td>
<td>66</td>
<td>63</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>60</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>NR</td>
<td>56</td>
<td>61</td>
<td>62</td>
<td>60</td>
<td>65</td>
<td>65</td>
<td>63</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>ZA</td>
<td>57</td>
<td>63</td>
<td>61</td>
<td>62</td>
<td>61</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>BB</td>
<td>50</td>
<td>55</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>51</td>
<td>52</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>PO</td>
<td>37</td>
<td>42</td>
<td>42</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>41</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>KE</td>
<td>56</td>
<td>60</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>56</td>
<td>57</td>
<td>57</td>
<td>56</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Comparing the estimates of the cumulative SF and CF contribution to the convergence process in Slovak regions (Chart 38), a positive correlation with the volume of the funds provided can
be seen, except for the Bratislava region that was able to converge based on investments generated from internal sources and positive labour migration even autonomously. The SF and CF had the strongest impact on real convergence (a growth exceeding 8 p.p.) was observed in the Žilina and Trenčín regions. Despite a relatively positive development in convergence in the Nitra region, the drawing of financial resources from the SF and CF was identified to have only a below-average effect on the region's convergence. Important factors in this case include a baseline situation, demographic development and the SF and CF rate to GDP of a region. The graphical visualisation clearly shows that a considerable increase in the drawing of the EU funds in 2015 should have a substantial convergence effect. Without the increase, the contribution to the convergence process can only be expected around the level of 4 %, that is, 2 p.p. lower.

Chart 38: Estimated cumulative contribution of the drawing of financial resources from the SF and CF to the convergence indicator- GDP per capita at PPP (2012-2014 estimate, 2015 forecast), percentage points

Source: calculations by authors

The annual SF and CF contribution to the convergence of NUTS 3 regions, i.e., a difference in the rate of convergence/divergence compared against the EU-28 average under the scenario including and excluding the drawing of the funds is show in Table 22. The highest 2009-2015 average contribution is present in the Žilina and Trenčín regions (1.2.p.p.). From the SF and CF point of view, it is evident that the contribution substantially depends on the development in the volume and the structure of the drawing of the EU funds. Due to a nominal decrease in the drawing of the EU funds and a low GDP growth at the national level, we can observe a negative contribution to convergence in some regions in 2013 and 2014. Obviously, this negative situation relates to the amount drawn in the previous year and, logically, if no funds had been drawn in the previous year, any SF and CF contribution would have had a positive nominal effect on convergence. Looking at the previous chart, it is evident that even a positive nominal contribution to convergence does not necessarily mean that real convergence has occurred, it could just simply slowdown the divergence process.
A model view of NUTS 2 regions’ convergence towards the EU-28 average is shown in Chart 39. A clearly positive impact of the drawing of financial resources from the SF and CF on the convergence process is visible under all scenarios. Real convergence towards the EU average occurs in all Slovak regions except for Central Slovakia where the convergence process is rather stagnating. Without the SF and CF spending, two regions would see a negative development in their convergence, Western Slovakia would rather stagnate, and a clearly positive development would only be felt in the Bratislava region.

Chart 39: Model comparison of GDP per capita at PPP convergence towards the EU-28 average under scenarios with and without SF and CF spending at the NUTS 2 level, excluding the Bratislava region (2012-2014 forecast, 2015 outlook)

Source: calculations by authors

No real convergence among Slovak regions occurred in the reporting period; quite the opposite, their divergence has increased. Comparing the assumptions on the structure of drawing in 2014 and the actual situation, it can be stated that the positive contribution to reducing real regional divergence was higher than expected under the 2014 evaluation. On the other hand, it was negatively affected by a lower than expected overall aggregate growth and Slovakia’s slower
convergence to the EU-28 average. Due to the drawing effect, the sigma coefficient was lower than in the no-drawing scenario (and also lower than last year's assumptions). It means that despite the ongoing regional divergence, the drawing of financial resources from the SF and CF decelerated this process significantly. From the point of view of SF and CF allocations to Slovak regions it still needs be noted, however, that the convergence process was not a key NSRF priority as a considerable portion of funds was allocated to relatively strong regions (to address an infrastructure debt, in particular).

Chart 40: Comparison of regional convergence measured by sigma coefficient in Slovak regions

The uptake of funds provided under Cohesion Policy measures contributed to Slovakia’s convergence towards the EU average; such convergence would not have occurred if the funds had not been provided. Had it not been for the economic crisis, Slovakia’s convergence towards the EU-28 average would have followed a different path. The Slovak economy was at the peak of its upturn before the onset of the economic crisis, with all regions experiencing strong convergence. Pre-crisis forecasts indicated a steep macroeconomic growth would also continue during the 2008-2013 period, with advanced economies expected to post a GDP growth at levels close to or below 2%. Therefore, we can assume that if the global economy had not slipped into a crisis, the convergence process would have taken a more dynamic and more evenly spread path across all regions. However, despite the SF and CF spending, the crisis slowed down the convergence process, especially in weaker regions. On the other hand, GDP generated in Slovakia fell behind expectations due to the crisis. This, in turn, resulted in that an overall SF and CF share and contribution to the convergence process was higher than expected.

Main findings

- Despite the economic crisis, the drawing of financial resources from the SF and CF positively contributed to national convergence towards the EU average in this period.
- Without the SF and CF spending, the convergence process would have reversed in most regions.
Owing to its strength and demographic development, the Bratislava region is able to grow significantly even without the support from the SF and CF. Nevertheless, it is important to provide support to the Bratislava region given its specific position and relevance to supporting economic growth in other regions.

At the NUTS 2 level, Western Slovakia is likely to approach the level of 75% of EU average in the nearest future. Without the SF and CF funding, the region’s convergence process would remain just below the 70% threshold.

Without the SF and CF spending, differences between Slovak regions (measured by per capita GDP at PPP) would be more noticeable (greater).

The onset of the economic crisis slowed down the convergence process and, at the same time, the SF and CF contribution was stronger than expected.

The effects of the SF and CF implementation on Slovakia’s convergence are permanent and significant but have only a moderately positive impact on the convergence process in future.

The slowdown and structure of the drawing of the EU funds in 2014 had a negative contribution to Slovakia’s real convergence towards the EU-28 average but positively contributed to lower regional divergence.

Model results indicate that the assumed high drawing rate of the funds in the last year will have a significant effect on Slovakia’s convergence but a major portion of these effects will only be short-term ones.

Answer to the question

What are the impacts of the SF and CF implementation on Slovakia’s real convergence towards the EU average?

The drawing of financial resources from the SF and CF made a considerably positive contribution to Slovakia’s real convergence towards the EU-28 average. Without their contribution, the process would have very likely stopped and convergence would have dropped in six out of eight Slovak regions. However, the metropolitan Bratislava region has the strongest effect on preserving this level, without which the convergence process would follow a downward trend.

From the regional point of view, the SF and CF contribution to the convergence process positively correlates with an expenditure-to-GDP rate of the region. This factor, however, may be slightly overrated, especially by a large volume of infrastructure investments that may have a higher territorial effect on the surrounding regions which the model is unable to capture in full.

As far as an outlook of a real convergence rate until the end of 2015 is concerned, the most important factor is that the Western Slovakia region will very likely fail to achieve 75% of EU-28 average, which means that the allocation of financial resources from the SF and CF will not be limited in the 2014-2020 programming period.

The SF contribution had a positive impact on the mitigation of the divergence process among Slovak regions, even though it failed to reverse this trend. As described in more detail in Chapter 5.7, regional SF allocations had no clear-cut cohesion character. The support provided to economic growth and infrastructure may have, however, a long-term positive impact on other
regions, as well, therefore we recommend defining growth and cohesion priorities for the next programming period in a way that would allow for clearer identification of the effects expected from the SF implementation.

5.7 How much was the geographical allocation of EU funds efficient at the NUTS 3 level?

Approach to evaluation

In order to evaluate the efficiency of geographical allocation of financial resources from the EU funds at the NUTS 3 level, an analysis of the CSF multiplier values for individual regions was used, taking into account objectives pursued by the NSRF. Please note that the values of uptake at the level of regions are indicative amounts obtained by disaggregating the data available in the ITMS. Since the information about accurate geographical allocations was unavailable, the funds spent were disaggregated using a method described in Annex B. The CSF multiplier, describing the relation between a cumulative SF and CF uptake at the regional level and additional GDP created as a result of that uptake in a given region, was chosen as an indicator of the efficiency of the SF and CF uptake. The value of the CSF multiplier can be calculated as a ratio of the cumulative value of additional GDP formation generated by the implementation of SF and CF projects (numerator) and the cumulative amount of SF and CF financial resources (denominator) drawn from the beginning of the programming period until the relevant year in a region subject to evaluation.\(^{23}\)

Analysis and its results

The efficiency of geographical allocation of the SF and CF financial resources can be assessed from several perspectives. In the first place, the geographical allocation of the SF and CF resources at the level of NUTS regions largely reflects economic performance of individual regions (regional convergence efforts) and the nature of projects implemented within their territories (addressing areas of concern, e.g., investment debts). Owing to its restricted eligibility to draw EU funds and a relatively low share of their uptake in the Bratislava region, approximately 9% of the total volume of available funds were absorbed by this region at the end of 2014. Due to an increased rate in the drawing of EU funds (investments in transport infrastructure and modernisation of public transport) throughout 2014, the Bratislava region was replaced by the Trnava region as a region with the smallest volume of EU funds drawn. Due to an agricultural character of the output\(^{24}\) on a majority of the Nitra region territory, the region absorbed approximately the same volume of SF and CF financial resources as the Bratislava region. Thanks to a higher concentration of major infrastructure projects, implemented especially along the northern-southern axis of the Považie area, the Trenčín region absorbed almost 18% of the total SF and CF allocation by the end of 2014. Infrastructure expenditure accounted for more than 76% of total SF and CF spending allocated to the Trenčín region. A relatively high share of infrastructure expenditure was also observed in the Žilina and Prešov regions, making up 62% and 60% of total expenditure, respectively. Banská Bystrica and

\[^{23}\]CSF_{\text{mult}} = \frac{\sum \Delta GDP_i}{\sum SF_i + CF_i}, where \(i\) refers to the years subject to evaluation.

\[^{24}\]This type of production receives financial support from different EU funds.
Košice make up another couple posting a similar absorption level, having absorbed approximately 12% of total SF and CF expenditure. Similarly to the Žilina and Prešov region, infrastructure expenditure accounted approximately for a half of all funds absorbed in these two regions (52% in BB, 47.7% in KE). In terms of the volume and structure of the funds drawn, the geographical distribution of the EU funds spending shows substantial differences at the level of NUTS 3 regions, determined by the objectives pursued.

Chart 41: Shares of individual regions in SF and CF spending

Another important aspect in examining the efficiency of geographical allocations is to look at the ability of individual regions to absorb available financial resources from the SF and CF. A closer look on the progress in the drawing of the EU funds between 2007 and 2014 clearly reveals that the start of their real implementation was delayed. In the first years of the programming period, i.e. in 2007 and 2008, the uptake of the EU funds was only marginal relative to available resources, with a major portion of expenditures coming from technical assistance resources used by stakeholders involved in the implementation of the cohesion policy. The real drawing of financial resources from the SF and CF did not start before 2009, a major portion of the funds spent that year was used to start up infrastructure projects in the Trenčín, Žilina and Banská Bystrica regions. A similar situation also occurred in 2010, with an onset of larger infrastructure projects in the Prešov region. The pace of the EU funds spending intensified after 2011 when the volume of the funds spent for the first time exceeded EUR 100 million in all regions. An upward trend in the intensity of the EU funds spending could be observed in all Slovak regions until 2012. In 2013, the upward trend came to a halt in four regions (TT, NR, ZA and BB), which was accompanied by a moderate decrease in the uptake of financial resources compared to 2012. This could indicate that the current level of the drawing of financial resources from the SF and CF in some regions has already approached their absorption capacity.

Source: ITMS
Table 23: Share of funds drawn from an EU source compared against region’s GDP in %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>TT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.9</td>
<td>1.5</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>2.6</td>
</tr>
<tr>
<td>TN</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>3.4</td>
<td>3.0</td>
<td>3.3</td>
<td>5.1</td>
<td>4.2</td>
<td>7.3</td>
</tr>
<tr>
<td>NR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.2</td>
<td>1.9</td>
<td>2.1</td>
<td>1.6</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>ZA</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>2.9</td>
<td>3.0</td>
<td>3.0</td>
<td>2.8</td>
<td>3.6</td>
<td>5.8</td>
</tr>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>3.3</td>
<td>2.9</td>
<td>3.2</td>
<td>2.9</td>
<td>2.2</td>
<td>5.5</td>
</tr>
<tr>
<td>PO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>2.6</td>
<td>4.1</td>
<td>4.2</td>
<td>5.0</td>
<td>3.9</td>
<td>7.0</td>
</tr>
<tr>
<td>KE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>1.3</td>
<td>2.0</td>
<td>2.7</td>
<td>3.5</td>
<td>2.2</td>
<td>4.1</td>
</tr>
<tr>
<td>SK</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.6</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Source: calculations by authors

This statement is also supported by a relatively higher efficiency in the drawing of financial resources from the SF and CF in the case of the Bratislava region where such funds made up less than 1% of region’s GDP. A number of complications in the drawing of the SF and CF resources occurred in 2014 which translated into a year-on-year slowdown in the EU funds uptake in all regions except for BA and ZA, despite its expected acceleration. One of the main problems of the 2007-2013 programming period is the delayed uptake of financial resources in 2007 and 2008 which now seems to be very difficult to make up for. Other problems restricting the level of uptake at the regional level include insufficiently prepared calls for project proposals at the beginning of the programming period, the complexity of the EU funds drawing, a relatively high administrative intensity and difficult to meet terms and conditions under certain calls, especially in relation to small- and medium-sized businesses.

Chart 42: Drawing of EU funds (including co-financing) by NUTS 3 regions, EUR million

Source: Authors, based on ITMS data
Examining the cumulative value of GDP growth driven by the SF and CF implementation at the level of individual regions gives important information about the efficiency in the drawing of the EU funds. At the end of 2014, the highest ratio of additional cumulative GDP to the 2007 GDP of a respective region was seen in the regions of Žilina (38 %), Prešov (35 %) and Trenčín (25 %). The Bratislava region had the lowest ratio, approximately at 12 %, in 2014. Chart 43 shows a similar trend also with respect to impacts expected in 2015; an additional GDP exceeding in aggregate 50 % of GDP from the first year of the programming period can be expected to be generated in the Prešov, Trenčín and Žilina regions. The lowest volume of additional GDP generated by the implementation of the EU funds in 2015, at 19 % of the 2007 GDP, can be expected in the Bratislava region. It must be noted, however, that the volume of funds drawn in this region only represents some 6 % of the 2007 GDP, hence the efficiency in the SF and CF spending is relatively high in this region.

Chart 43: Comparison of cumulative uptake and additional GDP in 2014 and 2015 by NUTS 3 regions and for Slovakia, ratio to the 2007 GDP

![Chart 43](chart_image)

Source: ITMS, calculations by authors

The values of the CSF multiplier indicate that Bratislava is the most efficient region in Slovakia, which has the strongest economy of all Slovak regions and whose absorption potential greatly exceeds the volume of allocated funds in spite of a notable acceleration in the past years of the programming period. On top of that, projects implemented in the Bratislava region are projects with a higher value added and, therefore, generate stronger multiplier effects. Multiplier effects are also stronger in this region due to the fact that a large portion of the funds drawn was used for wages in the services sectors with a demand for highly skilled labour. These wages are then relatively quick to generate additional indirect effects in the region's economy through a growing household demand. The CSF multiplier was relatively high at 3.1 in this region at the end of 2014, but the EU spending to GDP ratio exceeded 1 % of GDP in 2014 only, which implies relatively weaker effects in absolute terms. A group of regions with a higher efficiency rate comprises Žilina, Trnava and Nitra which benefited from their economic strength and a relatively higher share of expenditure used to support industry and services. Of economically stronger regions, the lowest efficiency rate measured by the CSF multiplier was achieved in the Trnava region, resulting from a high share of expenditure spent on infrastructure projects whose
multiplier effects will become visible with a longer delay. In addition, infrastructure investments bring along weaker indirect impacts on the region's economy due to a relatively smaller volume of wage costs. Economically weaker Košice region had a similar efficiency rate which was largely driven by research and development expenditure and expenditure to support industry and services. The last group of regions sharing similar values of CSF multiplier consists of the economically weakest Banská Bystrica and Prešov regions in which a substantial portion of funds was allocated to infrastructure development and modernisation projects, thus contributing to investment debt reduction in these regions. A positive fact is that the multiplier value has been gradually growing for all regions and that none of the regions had this value lesser than 1 in 2014. Efficient regions are those in which the CSF multiplier is greater than 2. According to Bradley and Untiedt (2009), a CSF multiplier of 2 represents the level attained by medium efficient countries in the 2000-2006 programming period. A key source of differences in the regional multiplier is the structure of implemented projects, with a higher efficiency rate observed in those regions that implemented projects with a relatively higher labour intensity and higher value added.

Table 24: Cumulative CSF multiplier by NUTS 3 regions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bratislava region</td>
<td>2.2</td>
<td>2.5</td>
<td>2.7</td>
<td>2.6</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Trnava region</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Trenčín region</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Nitra region</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Žilina region</td>
<td>1.2</td>
<td>1.6</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Banská Bystrica region</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Prešov region</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Košice region</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.7</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Main findings

- Spending the SF and CF resources on infrastructure development and/or modernisation is accompanied by a lower value of CSF multiplier, indicating a lower level of short-term effects. However, it creates conditions for the implementation of projects with a higher value added in the future.

- Investments in science and research proved efficient, as confirmed by the 2014 value of the CSF multiplier in the Bratislava and Žilina regions, two of the three regions with the highest level of cumulative expenditure on science and research until 31 December 2014.

- Expenditure spent on the direct support for industry and services have a positive instant effect on the efficiency rate measured by CSF multiplier.
Regions whose CSF multiplier value reaches 2 can be considered relatively highly efficient.

It can be stated that none of the regions spent the EU funds inefficiently, since the value of the CSF multiplier was greater than 1 in all regions.

Answer to the question

How much was the geographical allocation of EU funds efficient at the NUTS 3 level?

Based on the results achieved, it can be stated that the geographical allocation followed the objectives defined under the cohesion policy. The Bratislava region was most efficient in the drawing of cohesion policy funds, which was determined by the sectoral allocation of the funds spent in this region, largely aimed at supporting science and research, services and human resources in institutions in charge of the management and implementation of the EU funds; this was supplemented by expenditure to support industrial production in 2014. The CSF multiplier values in individual regions indicate that the expenditure to support industry and services generate more intensive immediate impacts on GDP growth while the effects of infrastructure investments become felt with a certain delay. Even though the infrastructure investments are less efficient from a short- to medium-term perspective, they are essential to further economic growth in the future. Therefore, in terms of regional allocation, consideration needs be given to the difference between a growth and cohesion allocation of SF and CF resources in the current programming period. The geographical efficiency of allocations measured by the CSF multiplier indicates efforts to meet NSRF objectives and, taking into account the findings presented in Chapter 5.5, it can be stated that, with respect to the objectives defined under the NSRF, the financial resources were to a large degree spent efficiently in terms of their geographical allocation.

5.8 Has the SF and CF implementation led to changes and/or to an increase in the value added generated in individual sectors of Slovakia’s national economy? If yes, in which sectors (broken down by regions)?

Approach to evaluation

Model outputs for gross value added in selected sectors at the NUTS 3 level were chosen in order to find an answer to the question about the impact of the SF and CF implementation on the increase in value added generated by individual sectors of the national economy, as well as on the regional level. The evaluation takes into consideration their absolute values and their relative share in the total gross value added generated in the relevant region. Gross value added represents a portion of output generated by the operation of an economic entity.

Analysis and its results

The SF and CF implementation directly generated an additional gross value added in a majority of sectors of the national economy. Since the model considers the development in the agricultural sector exogenous, excluded from the direct impacts of the EU funds
implementation, the modelled results do not provide a picture of the impacts of the implementation on gross value added in this particular sector. In view of the fact that the largest portion of the EU funds was targeted at the development and/or modernisation of infrastructure, the strongest impacts of the SF and CF resources on the formation of the value added was felt in the construction sector. In 2014, the implementation of the EU funds accounted for almost one fifth of the total gross value added generated in the sector. The weakest impact on the gross value added was observed in the non-market services sector where the EU funds implementation only generated an additional growth of 2.1% in 2014. In the industry and market services sectors, the implementation respectively generated additional 3.8% and 6.2% of the gross value added produced in the corresponding sector. However, substantial interregional disparities exist, as illustrated in more details in tables contained in Annex C8. The largest disparities were observed in the construction sector where the EU funds generated an additional growth in the gross value added at a rate of 8.1% in 2014 in the Bratislava region, compared against roughly 35% in the Trenčín region. Such disparities were driven by a substantial irregularity in the level of implementation of the projects focused on the development and/or modernisation of infrastructure at the regional level. In 2014, just above 4% of total infrastructure expenditure was allocated to the Bratislava region while the Trenčín region received as much as 27%. The strongest impact of the SF and CF implementation on the gross value added in market services was observed in the Trenčín and Žilina regions in 2014 where EU funding generated around 10% of the gross value added. A similar development occurred in the industry sector where the strongest impact (8.2%) of the SF and CF spending on the gross value added was felt in the Trenčín region. Despite the deceleration of EU funds drawing by nearly 17% year-on-year, the strong effects of the EU funds spending on the formation of gross value in the Trenčín region were driven by the region’s highest drawing rate of all Slovak regions in 2014. The Trenčín region absorbed around EUR 270 million in 2014, accounting for 17.5% of financial resources spent from the EU funds in Slovakia in that year.

Table 25: Share of additional growth in gross value added generated by the SF and CF implementation, Slovakia, in %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Industry</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.7</td>
<td>1.6</td>
<td>2.3</td>
<td>3.2</td>
<td>3.8</td>
<td>5.1</td>
</tr>
<tr>
<td>Construction</td>
<td>0.0</td>
<td>0.2</td>
<td>5.5</td>
<td>12.7</td>
<td>14.9</td>
<td>22.1</td>
<td>22.8</td>
<td>19.8</td>
<td>37.9</td>
</tr>
<tr>
<td>Market services</td>
<td>0.0</td>
<td>0.1</td>
<td>1.0</td>
<td>2.4</td>
<td>3.3</td>
<td>4.6</td>
<td>5.6</td>
<td>6.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Non-market services</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
<td>1.1</td>
<td>1.4</td>
<td>1.7</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.1</td>
<td>1.1</td>
<td>2.5</td>
<td>3.4</td>
<td>4.6</td>
<td>5.3</td>
<td>5.7</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Taking a closer look at the impacts of the SF and CF implementation on the share of individual sectors in the total gross value added, the sectors can be divided into two groups in most regions. The first group includes sectors whose share in the total gross value added decreases in all regions - agriculture, non-market services and industry. Given a relatively small volume of resources used for the direct support to the industry sector relative to its size, their effect on the growth in gross value added in industry is a cause of the decline in the sector's share in the total gross value added. Due to less efficient implementation of the EU funds, the non-market services sector failed to generate an additional gross value added in a volume sufficient to retain...
its share in the total gross value added. Charts illustrating the size of the decline in the share of these sectors in the total gross value added are contained in Annex C8.

Chart 44: Additional share of gross value added of the construction sector in the total gross value added generated by the SF and CF spending

Source: calculations by authors

The second group comprises sectors in which the SF and CF implementation increased their share in the total gross value added - construction and market services. A relatively large volume of financial resources flowed into the construction sector due to the SF and CF implementation (approximately 53 % of total allocations at the end of 2014). Due to the intensive support for investments in infrastructure development and modernisation across all regions, the sector’s share in the total gross value added rose in all regions. The market services sector was able to absorb and implement SF and CF resources efficiently, thus increasing the sector’s share in the total gross value added. Exemptions in this group are the Prešov region and, in the first years of the programming period, also the Žilina region. In these regions, a steep growth in the share of the construction sector resulted in a temporary and/or permanent declines in this sector's share in the total gross value added.
Main findings

- The SF and CF implementation resulted in a growth in the gross value added in all sectors across individual regions. Even though the model does not describe a change in the agriculture sector, it can be assumed that the sector also saw a moderate growth in the gross value added as result of an indirect effect of the EU funds implementation (a growth in household demand).

- The strongest impact of the SF and CF implementation on the gross value added across all regions was observed in the construction sector which absorbed more than 50% of total resources.

- The weakest effect was felt in the non-market services sector whose ability to efficiently absorb available SF and CF financial resources was rather limited.

- The impact of the SF and CF spending on the industry sector corresponds to the sector’s size and the volume of funds allocated for the direct support to this sector.

- The market services sector was most efficient in using the SF and CF financial resources and also benefited from their indirect impacts, including with a view to the volume of resources allocated to this sector.

- The growth in the share of market services in the total gross value added indicates that the EU funds implementation positively affected structural changes in the economy and facilitated its transition to an economy whose structure is closer to that of advanced economies.

- The 2015 update did not identify any crucial changes in the scope and trends in the impact of the SF and CF spending on the formation of the gross value added.
Answer to the question

Has the SF and CF implementation led to changes and/or to an increase in the value added generated in individual sectors of Slovakia's national economy? If yes, in which sectors (broken down by regions)?

Driven by the effects of the SF and CF implementation, an additional gross value added was generated across all sectors of the national economy and across all regions. Though the model does not capture changes in the gross value added generated in the agriculture sector, taking into consideration the growth observed in others sectors it can be stated that the SF and CF had a positive impact on this sector, as well (mainly indirectly, through a growth in domestic demand). The SF and CF implementation also influenced the structure of the gross value added generated in individual regions and contributed to its transformation closer in structure to advanced economies. The largest change in the gross value added, driven by the implementation of the EU funds, was observed in the construction sector at the end of 2014, which received more than a half of the total allocations. Without the SF and CF spending, the construction sector would have seen a substantial drop in output and employment. The non-market services sector showed only a limited capacity to use the SF and CF resources to increase the formation of its gross value added. Given their size and the volume of funds absorbed, the industry and market services sectors were able to adequately utilise the direct and indirect effects of the EU funds implementation to increase their gross value added.

What is the share of value added generated by the business and public sectors?

Approach to evaluation

In order to answer this question, model outputs of the volume of gross value added generated by the business and the public sector were compared. The value added generated by the private and public sectors give a picture of the strength and conditions of individual sectors and, to a certain degree, of the situation in the country's business environment. Based on the values of the indicators of the volume of gross value added generated by the business and public sector, we can calculate the value of the SF and CF contribution indicator which represents the difference between the share of the public sector in the total gross value added with and without the EU funding, and/or between the share of the business sector in the total gross value added with and without the EU funding. For the purposes of this analysis, the public sector covers public administration, education, and health and social care (NACE Rev.2: sectors O, P and Q). The arts, entertainment and recreation sector was excluded from the public sector, since a large portion of the value added generated in this sector comes from private businesses.

Analysis and its results

The development in the share of the business and public sector in the total gross value added during the programming period was largely affected by the onset of the global economic crisis which resulted in a relatively sharp increase in the business sector's share in 2009.
Table 26: Share of the business sector, public sector and SF and CF contribution to value added in %

<table>
<thead>
<tr>
<th>Region</th>
<th>2007</th>
<th>2009</th>
<th>2014</th>
<th>2015(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bratislava region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>86.8</td>
<td>85.9</td>
<td>87.6</td>
<td>87.8</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Public sector</td>
<td>13.2</td>
<td>14.1</td>
<td>12.4</td>
<td>12.2</td>
</tr>
<tr>
<td>Trnava region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>89.6</td>
<td>86.8</td>
<td>86.7</td>
<td>87.1</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Public sector</td>
<td>10.4</td>
<td>13.2</td>
<td>13.3</td>
<td>12.9</td>
</tr>
<tr>
<td>Trenčín region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>85.5</td>
<td>82.1</td>
<td>81.4</td>
<td>81.7</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.4</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Public sector</td>
<td>14.5</td>
<td>17.9</td>
<td>18.6</td>
<td>18.3</td>
</tr>
<tr>
<td>Nitra region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>90.7</td>
<td>89.9</td>
<td>89.4</td>
<td>89.5</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Public sector</td>
<td>9.3</td>
<td>10.1</td>
<td>10.6</td>
<td>10.5</td>
</tr>
<tr>
<td>Žilina region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>88.5</td>
<td>86.9</td>
<td>87.4</td>
<td>87.6</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.3</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Public sector</td>
<td>11.5</td>
<td>13.1</td>
<td>12.6</td>
<td>12.4</td>
</tr>
<tr>
<td>Banská Bystrica region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>86.3</td>
<td>84.4</td>
<td>82.2</td>
<td>82.2</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Public sector</td>
<td>13.7</td>
<td>15.6</td>
<td>17.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Prešov region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>85.5</td>
<td>83.8</td>
<td>83.9</td>
<td>83.9</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.1</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Public sector</td>
<td>14.5</td>
<td>16.2</td>
<td>16.1</td>
<td>16.1</td>
</tr>
<tr>
<td>Košice region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>87.8</td>
<td>85.4</td>
<td>87.4</td>
<td>87.3</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Public sector</td>
<td>12.2</td>
<td>14.6</td>
<td>12.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business sector</td>
<td>87.6</td>
<td>85.8</td>
<td>86.2</td>
<td>86.4</td>
</tr>
<tr>
<td>SF/CF contribution</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Public sector</td>
<td>12.4</td>
<td>14.2</td>
<td>13.8</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Source: calculations by authors

At the beginning of the programming period, the business sector in Slovakia accounted for 87.6% of the gross value added but its share fell 2 percentage points to 85.8% in 2009. Without the SF and CF implementation, the decline would have been 0.1 p.p. higher. In 2014, the business sector accounted for 86.2% of the gross value added, of which 0.5% was generated by the contribution of the SF and CF implementation. The lowest share of the public sector in the total gross value added was observed in Nitra region, around the 10% level. With the SF and CF contribution, the share of the business sector is projected to increase to 86.4% of total gross value added in 2015. The highest contribution of EU funding to the growth in the business sector's share is expected in the Trenčín region (a region with the highest level of uptake) in 2015, as much as 2.1 p.p.
Looking at the growth in the business sector's share in the total gross value added between the crisis year of 2009 and 2014, we can observe that, without the SF and CF contribution, this share would have dropped more considerably in most regions. The most significant decrease would have occurred in the Banská Bystrica region, at a rate of more than 2.5%. The most moderate decrease was observed in the Prešov region. In both regions, the largest allocations are aimed at infrastructure development which also reflected in a growth in the gross value added generated by the construction sector which belongs to a part of the business sector in the national economy. The smallest contribution of the EU funding to the growth of, or to the mitigation of the decrease in, the business sector's share in the total gross value added between 2009 and 2014 occurred in Bratislava and Nitra region, approximately at a level of 0.2 p.p.

Main findings

- The SF and CF implementation contributed to mitigating the impacts of the economic crisis on the business sector.
- The strongest contribution of the SF and CF implementation to reducing the decrease in the business sector's share in the total gross value added occurred in the Trenčín and Prešov regions where a majority of resources was allocated to infrastructure development and modernisation.
- In the Žilina region, EU funds implementation contributed to a growth in the business sector's share; without the SF and CF spending, the ratio between the business and the private sector would have stagnated in the region.
- The Košice region would have posted the largest increase in the business sector's share in the gross value added without the implementation of the EU funds.
Answer to the question

What is the share of value added generated by the business and public sectors?

The share of the business sector in the gross value added, representing the size of private activities in the economy, is relatively high in Slovakia, having reached 86.2% in 2014. The private sector’s share peaked in 2008 at nearly 88%; afterwards, the share of the public sector rose to approximately 14% due to the economic crisis in 2009 and was preserved throughout 2010, as well. From 2010 on, the SF and CF implementation contributed to a growth in the business sector's share in Slovakia’s total gross value added; this contribution represented 0.5 p.p. in 2014 and is expected to increase to 0.7 p.p. in 2015. Without the EU funds implementation, most regions would have seen a larger decline in the share of the business sector in the total gross value added, except for the Žilina region where the ratio between the business and the public sector would have remained unchanged, and the Bratislava and Košice regions in which the business sector’s share would have increased even without the SF and CF spending. The strongest positive effects on the public sector’s gross value added were observed in the Trenčín and Prešov regions where EU funds supported large infrastructure projects and contributed to reducing the decrease in the business sector's share by 1.3 and 0.9 p.p., respectively. The Košice region would have seen the largest growth in the share of the business sector without the use of the cohesion policy funds.

5.10 Taking into account the progress in the SF and CF implementation so far, to what degree the NSRF strategic objective “Considerably increase, by 2013, the competitiveness and performance of Slovakia's regions and economy, and to increase employment while respecting sustainable development” has been met?

Approach to evaluation

The NSRF has defined a set of indicators to monitor the meeting of strategic objective “Considerably increase, by 2013, the competitiveness and performance of Slovakia's regions and economy, and to increase employment while respecting sustainable development”. In order to evaluate the fulfilment of the strategic objective, the progress made in meeting target values of these indicators (energy intensity of the economy, summary innovation index, GDP per capita at PPP compared to EU-15 average, labour productivity compared to EU-15 average, employment rate compared to EU-15 average) was analysed and the impact of the SF and CF implementation on the strategic objective was subsequently identified.

Analysis and findings

Table 27 describes the development in NSRF target indicators. The target values have virtually been met for all indicators, except for Slovakia’s ranking in the summary innovation index, which worsened last year. Qualitative factors of Slovakia's economic growth thus still remain one of the biggest obstacles to its more dynamic development.

Meeting the energy intensity indicator target value is without problems also due to the little ambitious target set at 663.4kgOE/€1 000. Nevertheless, the energy intensity in Slovakia’s
The economy falls each year (except for 2013 which saw a moderate year-on-year increase in this indicator), thus contributing to its sustainable economic development. Major contributions to this improvement come from the programmes aimed at increasing energy savings in production (OP C&EG) and investments in public infrastructure reconstruction (ROP).

Table 27: Development in indicator targets under the NSRF between 2007 and 2013

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intensity</td>
<td>kgOE/1000 €</td>
<td>388.5</td>
<td>377.8</td>
<td>362.8</td>
<td>370</td>
<td>349.8</td>
<td>329.3</td>
<td>337.2</td>
<td>.</td>
<td>663.4</td>
<td></td>
</tr>
<tr>
<td>Summary innovation index</td>
<td>ranking</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>23</td>
<td>22</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>GDP per capita at PPP compared to EU-15 average</td>
<td>%</td>
<td>59.9 %</td>
<td>64.5 %</td>
<td>64.3 %</td>
<td>66.3 %</td>
<td>66.1 %</td>
<td>67.8 %</td>
<td>69.0 %</td>
<td>.</td>
<td>> 60</td>
<td></td>
</tr>
<tr>
<td>Labour productivity compared to EU-15 average</td>
<td>%</td>
<td>69.4</td>
<td>72.6</td>
<td>72.8</td>
<td>74.5</td>
<td>73.6</td>
<td>73.8</td>
<td>.</td>
<td>.</td>
<td>>70</td>
<td></td>
</tr>
<tr>
<td>Employment rate in 20-64 age group</td>
<td>%</td>
<td>67.2</td>
<td>68.8</td>
<td>66.4</td>
<td>64.6</td>
<td>65</td>
<td>65.1</td>
<td>65</td>
<td>65.9</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Source: Eurostat, calculations by authors. Data for some indicators were not available at the time of preparation of the report.

The SF and CF spending had a substantial impact on the volume of GDP per capita at PPP (see Chapter 5.5), a moderate contribution towards labour productivity (see Chapter 5.2) and a positive effect on the development in the labour market (see Chapter 5.13).

Answer to the question

Taking into account the progress in the SF and CF implementation so far, to what degree the NSRF strategic objective “Considerably increase, by 2013, the competitiveness and performance of Slovakia’s regions and economy, and to increase employment while respecting sustainable development” has been met?

Based on the model estimate and analyses in the previous chapters we can identify a positive impact of the SF and CF spending on the meeting of partial indicators under the NSRF strategic objectives. The EU funds made a positive contribution towards the convergence of the Slovak economy to the EU average, helped to mitigate the impacts of the financial and economic crisis on the Slovak economy and encouraged the creation of new, and retention of a portion of the existing jobs. However, they failed to substantially boost competitiveness and economic performance of the regions, including due to the fact that several competitiveness aspects were not affected by the cohesion policy interventions. In this respect, the cohesion policy mainly offset the impacts of the financial and economic crisis in Slovakia.
5.11 Are the objectives under the Europe 2020 strategy being met in individual economic sectors, thus contributing to removing regional disparities?

Approach to evaluation

As a follow-up to the Lisbon Strategy, the Europe 2020 strategy (hereinafter only referred to as Europe 2020) has been adopted as a strategic document defining the EU’s key objectives for the next decade. The strategy has set three key priorities for growth – smart, sustainable and innovative. The implementation of Europe 2020 is funded from national resources at the level of Member States, as well as from the EU’s cohesion policy funds. In order to implement the objectives set under the strategy, each Member State is required to transform these objectives into a so-called national reform programme that serves as the basic Europe 2020 document at the national level. The progress made in the implementation of the programme is subject to evaluation every year, an action plan for the programme is prepared and macroeconomic impacts of structural reforms are assessed. The national reform programme defines and evaluates the main structural measures designed to achieve a sustainable economic growth, create new jobs and improve the quality of life. The reform programme is closely accompanied by a stability programme which defines a medium-term outlook of a country’s fiscal policy. The preparation and implementation of the programme is part of an increasingly intensive coordination of economic policies (the so-called European semester) in the form of recommendations by the European Commission and the EU Council.

The preparation and implementation of the NSRF also took into account the objectives set under the Lisbon Strategy and later, in response to the impact of the economic and financial crisis, the Europe 2020 objectives, as well.

With respect to meeting the Europe 2020 objectives, a set of indicators has been defined at the national level, including their concrete target values. Given the nature of a majority of indicators, the macroeconomic model cannot estimate what contribution the cohesion policy interventions have towards the meeting of a majority of indicators set under the strategy. For the evaluation purposes, the data taken from the ITMS were divided by priority themes and the amount of expenditures, allocated and spent under the indicators relevant to inclusive, smart and sustainable growth, was identified.

Analysis and its results

Smart growth

The smart growth primarily refers to enhancing performance in education (encouraging people to learn and adapt their skills to the current demand), research and innovation (creating new products and services generating growth and jobs) and digital society (ICT uptake). The following objectives for smart growth have been defined at the national level:

25Europe 2020 strategy
26National Reform Programme
27The 2014 – 2017 Stability Programme
1 % of GDP to be invested in research and development.
Reduce school drop-out rate to less than 6 %.
Increase the share of 30-34 year-olds having completed tertiary education to at least 40 %.

The school drop-out rate showed a reverse turn at the end of 2013. While the figure continuously decreased from 6.5 % in 2007 to 4.7 % in 2010, we can see a gradual increase in the school drop-out rate since 2011. The largest year-on-year increase by 1 percentage point was observed in 2013 when the drop-out rate reached the level of 6.3 %. In science and research funding, we observe a positive impact of the drawing of financial resources from the SF and CF on the science and research expenditure to GDP ratio. The ratio has gradually increased since 2007, having reached 0.8 % of GDP in 2013. Nevertheless, this figure is still one of the lowest in the EU. While the total science and research expenditures from the SF represented 0.01 % of GDP in 2007, they increased to 0.05 % of GDP in 2013. The implementation of operational programmes targeted at smart growth was negatively affected by a number of factors. The implementation of the R&D operational programme was hindered by an excessive administrative burden placed on applicants while, at the same time, having very weak links to the existing structures for the support of science and research in Slovakia (especially with the long-term underfunded Agency for Science and Research Support). With respect to digital economy, the implementation of the Information Society operational programme, a key operational programme for information society, had been delayed from the very beginning of the programming period and substantially affected by the political cycle and the lack of related legislation.

Meeting the target of increasing the share of 30-34 year-olds having completed tertiary education seems flawless. Their share increased from 29.0 % to 36.9 % between 2007 and 2013. Meeting the 40 % target by 2020 is desirable to a certain extent, but the figure alone says nothing about the quality and qualification of graduates who often fail to find a place on the labour market.

The smart growth targets focus on strengthening the qualitative factors of economic growth, such as science, research, innovation, information society and education (Table 28). Under the current programming period, they are addressed by the following operational programmes: Competitiveness and Economic Growth, Research and Development, Employment and Social Inclusion, Bratislava Region, Health, and Information Society. The amount of funds contracted relevant to the smart growth objective represents EUR 4.2 billion in total; of the total allocation, the highest share of funds goes to innovation, research and development (39.33 %), education (33.07 %) and Digital Europe (27.6 %). At the end of the reporting period, the highest volume of EU funds was spent on education, training and life-long learning. The overall amount of funds spent reached the level of 54.76 % at the end of 2013. The absorption of the EU funds to promote the uptake of information and communication technologies still remains at a relatively low level (50 %); the uptake of EU funding in the field of innovation, science and research (47.3 %) cannot be considered satisfactory, either.

28Source: Eurostat: Total intramural R&D expenditure (GERD) by sectors of performance and source of funds.
29For distribution of funds by individual operational programmes see Annex C.11, Tables 1 through 3.
Table 28: Allocation and uptake of cohesion policy funds relevant to the Smart Growth objective at 31 December 2014 (EU funds)

<table>
<thead>
<tr>
<th>Europe 2020 themes</th>
<th>Priority theme</th>
<th>Allocation</th>
<th>% of total allocation</th>
<th>Funds drawn as at 31 December 2013</th>
<th>Funds drawn in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Europe</td>
<td>10-15</td>
<td>1 181 302 692.9</td>
<td>27.60 %</td>
<td>588 994 909.5</td>
<td>49.86 %</td>
</tr>
<tr>
<td>Innovation, research and development</td>
<td>1-9</td>
<td>1 683 722 072.6</td>
<td>39.33 %</td>
<td>795 839 165.7</td>
<td>47.27 %</td>
</tr>
<tr>
<td>Education, training and life-long learning</td>
<td>72-75</td>
<td>1 415 819 411.4</td>
<td>33.07 %</td>
<td>959 414 604.9</td>
<td>67.76 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4 280 844 176.8</td>
<td>100.00 %</td>
<td>2 344 248 680.0</td>
<td>54.76 %</td>
</tr>
</tbody>
</table>

Source: ITMS, calculations by authors

These figures indicate that despite the progress made in the implementation, there is a substantial portion of funds allocated to areas with a higher potential to positively affect smart growth left unspent, therefore, the contribution of the cohesion policy remains limited in this area. In addition, given a long-term rate of return and nature of investments targeted at smart growth, it is essential to remove the existing barriers to the implementation and increase the uptake rate by the end of 2015.

Inclusive growth

Under Europe 2020, inclusive growth primarily refers to increasing the employment rate (creating new and higher quality jobs), investing in training and increasing qualification in order to prepared for expected changes on the labour market, modernising labour markets and social security systems, and distribute growth contributions across all EU regions. The following objectives for inclusive growth have been defined at the national level:

- Increase the employment rate of 20-64 year-olds to at least 72 %
- Reduce the number of people living below the poverty line by 170 000 to 17.2 % of total population.

Under the 2007-2013 programming period, a total of EUR 1.09 billion was contracted for measures in this area of concern; of that, EUR 859.7 million (83) was allocated to measures targeting employment and EUR 237.4 million (17 %) to social inclusion measures. Employment projects concentrate on improving access to and retention of employment (OP Education, OP Employment and Social Inclusion) and reinforcing the ability of employees, firms, businesses and entrepreneurs to adapt to the changing conditions (OP Competitiveness and Economic Growth, OP Education, OP Employment and Social Inclusion). In the field of social inclusion, the operational programmes focus on improving and promoting social inclusion of disadvantaged people (OP Education and OP Employment and Social Inclusion).

Table 29: Allocation and uptake of cohesion policy funds relevant to the Inclusive Growth objective at 31 December 2014 (EU funds)

<table>
<thead>
<tr>
<th>Europe 2020 themes</th>
<th>Priority theme</th>
<th>Allocation</th>
<th>% of total allocation</th>
<th>Funds drawn as at 31 December 2013</th>
<th>Funds drawn in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social inclusion</td>
<td>71</td>
<td>237 464 953.1</td>
<td>16.96 %</td>
<td>86 067 878.3</td>
<td>36.24 %</td>
</tr>
<tr>
<td>Employment</td>
<td>62 - 70</td>
<td>859 748 615.2</td>
<td>83.04 %</td>
<td>584 576 272.1</td>
<td>67.99 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1 097 213 568.3</td>
<td>100.00 %</td>
<td>547 328 076.1</td>
<td>49.88 %</td>
</tr>
</tbody>
</table>

Source: ITMS, calculations by authors
Despite a relatively large allocations made in the field of inclusive growth, Slovakia shows a largely negative trend in the development of inclusive growth indicators, mainly due to the impacts of the crisis during the reporting period. The employment rate of 20-64 year-olds stood at 65.9 % in 2013, while it was as high as 67.2 % in 2007. Judging by the development in this indicator so far, the target rate of 72 % will not be met by 2020.

Equally, the number of people living below the poverty line has not been developing satisfactorily since 2007 when compared to the target rate of 17.2 % set to be achieved by 2020. Their share in total population was 19.8 % in 2013, down 1.5 percentage points since 2007 only. The persisting, we may even call it typical, problem of the domestic labour market is the long-term unemployment rate which continuously grew between 2007 and 2013, from 8.3 % to 10 %. We can see a moderate decline to 9.3 % in 2014. Taking into account the development seen so far, achieving the 3 % target value is unrealistic, even with the support by the remaining cohesion policy funds. We can state that without the SF and CF spending, meeting the aforementioned targets would have been considerably more difficult.

Sustainable growth

The sustainable growth objectives under Europe 2020 concentrate on the building of a competitive low-carbon economy, environmental protection, introduction of and capitalising on green technologies and practices, improvements in the business environment and introduction of ICT-based smart electricity grids. The following objectives for sustainable growth has been defined at the national level:

- Reduce greenhouse gas emissions from the non-ETS (Emission Trading Scheme) sectors so that they do not exceed the 2005 level by more than 13%.
- Increase the share of energy from renewable source in gross final energy consumption to 14%.
- Increase energy efficiency by saving 11% of final energy consumption compared to the average consumption between 2001 and 2005.

The development in meeting the national target indicates that the national objectives under Europe 2020 are being met. In 2012\(^{30}\), the greenhouse gas emissions from non-ETS sectors fell 8.4 %, the share of energy from renewable sources reached 10.4 % (the 2020 target is 14 %) of final consumption. The final energy consumption fell 4.4 % (the 2020 target is 11 %) in 2013 when compared to the 2001-2005 average. As far as the share of renewable energy is concerned, the target value is unlikely to be achieved, due to the cuts in the state support\(^{31}\) and a relatively small allocation of EU funds in this area.

The sustainable growth objectives were allocated the highest volume of financial resources in the current programming period. A total of EUR 5.4 million has been allocated from the EU funds to support sustainable growth; of that, EUR 3.8 billion (62.7 % of total allocation) is intended to support transport infrastructure development, EUR 1.8 billion (33.9 %) is allocated to environmental protection programmes and the smallest volume of funds, EUR 180 million (3.4 %) is earmarked to promote renewable energy and energy efficiency.

\(^{30}\) Data for these indicators were unavailable at the time of preparation of this evaluation report.

\(^{31}\) The growth in production of energy generated from renewable sources put a pressure on rising electricity prices for households due to high guaranteed feed-in tariffs for electricity from renewable sources.
Table 30: Allocation and uptake of cohesion policy funds relevant to the Sustainable Growth objective at 31 December 2014 (EU funds)

<table>
<thead>
<tr>
<th>Europe 2020 themes</th>
<th>Priority theme</th>
<th>Allocation</th>
<th>% of total allocation</th>
<th>Funds drawn as at 31 December 2013</th>
<th>Funds drawn in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>16-32, 52</td>
<td>3 838 750 130.1</td>
<td>62.77 %</td>
<td>2 276 673 908.8</td>
<td>59.31 %</td>
</tr>
<tr>
<td>Energy</td>
<td>33-43</td>
<td>180 192 818.4</td>
<td>3.35 %</td>
<td>102 392 609.0</td>
<td>56.82 %</td>
</tr>
<tr>
<td>Environment</td>
<td>44-51, 53, 54</td>
<td>1 885 070 756.7</td>
<td>33.88 %</td>
<td>997 639 745.3</td>
<td>52.92 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5 408 693 301.0</td>
<td>100.00 %</td>
<td>2 651 465 332.0</td>
<td>49.02 %</td>
</tr>
</tbody>
</table>

Source: ITMS, calculations by authors

The implementation of transport infrastructure projects was affected by multiple factors in the current programming period, which had an adverse impact on the pace of transport infrastructure development. Impacts of the political cycle, the lack of well-prepared projects at the beginning of the programming period, problems associated with environmental impact assessment and public procurement issues were among the main factors hindering the implementation.

Main findings

- The implementation of the operational programmes relevant to achieving the objectives set under Europe 2020 strategy was approaching 50 % in all of the three Europe 2020 priorities at the end of 2013.

- The greatest progress in the implementation was observed in education, training and life-long learning. However, most resources were spent on the development and modernisation of educational infrastructure and on actual educational activities (OP Education). A strong demand for the funding of this type of projects hints at an ongoing infrastructural debt in the educational system which had to be removed. The infrastructural investments, however, do not substantially contribute to improving the content and quality of education that are essential to smart growth.

- Despite the use of the EU funds, Slovakia is one of the Member States with the lowest share of expenditure spent on science and research relative to GDP. Since 2007, the EU funds have been the key instrument to increase their share, with only a minimum increment in funding from national public funds. In 2007, the total science and research expenditures from the SF represented 0.01 % of GDP and increased to 0.05 % of GDP in 2013.

- The inclusive growth targets have not been met but we can state that without the SF contribution, the development in this area would have been much more dramatic. The employment rate of 20-64 year-olds stood at 65.9 % in 2014, while it was as high as 67.2 % in 2007. An upward development in this indicator was considerably muffled by the onset of the economic and financial crisis. The target set to be achieved by 2020 is the employment rate of 72 % in this age group. Considering the current and expected development, this target will not be met.

- Despite a relatively low rate of financial implementation, the sustainable growth objectives are being met mainly in the environment and energy fields.
Answer to evaluation question

Are the objectives under the Europe 2020 strategy being met in individual economic sectors, thus contributing to removing regional disparities?

The contribution of the SF and CF spending to meeting the Europe 2020 objectives is mostly visible under the sustainable growth priority, namely in the environment and energy fields. Due to a slow pace in transport infrastructure development by the end of 2013, the effects of the SF and CF funding is restricted to particular Slovak regions only. Inclusive growth target values set under Europe 2020 are not being met, mainly due to persisting structural issues on the labour market (skills mismatch, high rate of long-term unemployment and related loss of working habits, slow integration of disadvantaged job applicants, etc.) In view of the limited national funding, a major contribution of the cohesion policy to smart growth is visible in science and research infrastructure development and transfer of knowledge into practice. A low rate of the EU funds uptake continues hindering a more favourable development in this area.

5.12 What is the share of the SF and CF spending under NSRF to GDP?

Approach to evaluation

To calculate the SF and CF spending to GDP ratio, we used aggregate annual data from the ITMS, distinguishing sources of financing (EU sources, state budget, own sources) and target sectors for investment (infrastructure, industry, human resources, services, research and development). Subsequently, individual shares of the EU funds spending (given as the sum of EU sources, state budget and own sources) in the gross domestic product of individual Slovak regions were quantified. The values of regional gross domestic product at current prices for 2008-2012 were taken from a database of the Slovak Statistical Office. The regional GDP data for 2014 not published so far were estimated using the methodology described in Chapter 3.2.

Analysis and results

Owing to the delays in the preparations of the 2007-2013 programming period, the uptake of financial resources was at a minimum level in 2007 and 2008. As shown on Chart 46, dynamics in EU funds uptake increased in 2009 when a substantial year-on-year rise occurred, albeit including due to low uptake rates in the previous years. In 2009, the total uptake of funds stood at EUR 602.9 million, up EUR 571 million year-on-year.
During the current programming period, the most significant year-on-year increase was observed in 2010. The drawing of funds reached EUR 1.36 billion, up EUR 758 million year-on-year (Chart 48 B). Most of the expenditures in that year were allocated primarily for the infrastructure and market services sectors. To a certain extent, 2010 was a watershed year in that it marked the beginning of a gradual decline in year-on-year increases in the absorption of cohesion policy funds (Chart 47 B). 2014 was the first year when the absorption volume declined against the previous year. In absolute terms, the absorption of funds in 2014 dropped by EUR 144 million against 2013.

Source: ITMS, calculations by authors
Chart 48: Year-on-year growth of Cohesion policy interventions from SF and CF in Slovakia between 2009 and 2014, in %

The total funds drawn from SF and CF relative to GDP are shown in Chart 49. In 2009, the share of funds drawn from EU sources, state budget and own sources earmarked for co-financing was slightly below 1% of GDP. In 2010, it rose to 2.14% of GDP and gradually reached 2.81% of GDP in 2013. The lower absorption volume in 2014 against 2013 has also been reflected in the lower drawing of funds relative to HDP. In 2014, this share dropped to 2.56% of Slovakia’s GDP. In light of the Slovak economy’s dependence on investments from SF and CF it is clear that, since the outbreak of the financial and economic crisis and the ensuing insufficient domestic demand including the need for fiscal consolidation, the cohesion policy funds have represented the key source of public investments in the Slovak economy.
From the regional perspective, the share of cohesion policy resources in the GDP of the individual regions is even more significant (Chart 50). The Bratislava region is the only exception because, as the most economically advanced region, it was able to draw only a minimum volume of resources compared to other Slovak regions. Also, its GDP is much higher than that of other Slovak regions and, therefore, the resulting share of cohesion policy resources in this region’s GDP is distorted to a certain extent.
Taking a closer look at individual regions, the highest share of cohesion policy resources absorption in GDP has been observed in the Trenčín region in 2013 (5.92% of GDP), the Prešov region in 2013 (5.7% of GDP), the Banská Bystrica region in 2013 (5.9% of GDP), the Košice region in 2013 (4.1% of GDP), the Žilina region in 2014 (3.9% of GDP), the Nitra region in 2012 (2.8% of GDP), the Trnava region in 2012 (2.3% of GDP)\(^{33}\) and the Bratislava region in 2014 (1.3% of GDP).

In the Banská Bystrica region, infrastructure expenditure had the highest share in GDP, amounting to 1.5% on average for the observed period. The highest share of infrastructure expenditure was at 2.9% of the region’s GDP in 2010. The second highest share of expenditures was that of the industry sector, representing 0.6% of GDP on average. The share of expenditure on science and research peaked at 0.4% of GDP in 2012 and 2013. In 2014 these expenditures declined to 0.3% of the region’s GDP. The share of expenditure on human capital was the highest in 2014, coming in at 0.5% of GDP. On average, the expenditures on human capital accounted for 0.2% of GDP.

\(^{33}\) The share is calculated as cohesion policy resources implemented in the given year relative to the region’s gross domestic product in the given year. The year-on-year fluctuation is primarily due to the completion of infrastructure projects in individual regions, which have been allocated the most financial resources in comparison with other sectors, as well as due to the trend in the region’s GDP in the given year.
Chart 51/a-b: Share of SF and CF on GDP in the Banská Bystrica region and the Bratislava region, by sector

In the case of the Bratislava region and its limited options in drawing funds due to its high GDP per capita performance measured in purchasing power parity, the absorption of funds relative to GDP is relatively small. In terms of individual sectors, the absorption of funds is distributed more evenly. The highest share of expenditures in the region’s GDP was observed in the industry sector, at 0.43% of GDP in 2014.

Due to a high concentration of science-research capacities as well as the limited options of the Bratislava region to draw financial resources from SF and CF, the share of science & research expenditures in GDP was the second highest, gradually rising from 0.06% of GDP in 2009 to 0.33% of GDP in 2014. In absolute terms, they amounted to EUR 242.9 million at the end of 2014 for an average of 0.18% of GDP. The second highest average share was observed in services, at 0.15%, followed by expenditures on industry at 0.12%, human capital at 0.1% and infrastructure at 0.09%.

In absolute terms, infrastructure expenditures amounted to EUR 125.8 million only. Considering the high utilisation rate of the transport infrastructure in the Bratislava region and its limited options to finance these projects from own sources, this region is considerably handicapped by the limited options to receive funding, which translates into insufficient utilisation of its economic and social potential. As regards the overall absorption, the Bratislava region and the Žilina region were the only regions which managed to increase the volume of absorbed cohesion policy resources as a share of GDP in 2014.

Source: calculations by authors, ITMS.
Chart 52/a-b: Share of SF and CF on regional GDP in the Košice region and the Nitra region, by sector

As regards the trends in the Košice region, it can be noted that the highest share of the SF and CF spending in GDP has been achieved in expenditures on infrastructure. This share has been steadily growing since 2009 and reached 2.6% of the region’s GDP in 2013. In 2014, expenditures in this sector only accounted for 1.21% of GDP. The second highest share in 2014 was observed in the industry sector at 1.16% of GDP, followed by the services sector at 0.53%, human capital at 0.25% and science and research at 0.14%. In absolute terms, infrastructure expenditures amounted to EUR 102 million in 2014. At the end of the year, the total volume of funds spent on infrastructure stood at EUR 587 million.

As regards the Nitra region, expenditures were distributed more evenly across individual sectors. In 2014, the share of expenditures on infrastructure represented 0.51% of GDP, with services coming in at 0.52%, industry at 0.39%, science and research at 0.1% and human capital at 0.19% of GDP. The average share of industry expenditures was 0.5% of GDP between 2009 and 2014. In the same period, the average share of infrastructure expenditures represented 0.77% of GDP. In the case of the Nitra region, it is possible to say that, when compared to regions having similar economic performance, its absorption volumes relative to GDP are the lowest.

Source: calculations by authors, ITMS

34 The year 2008 has been left out on purpose, because the spending in all sectors was very low, thus significantly distorting the average values relative to the region’s GDP.
Prešov and Trenčín represent those regions where the highest share of expenditures in GDP has been observed in the infrastructure sector. In the Prešov region, infrastructure expenditure represented 58 % of all expenditures from the structural funds, whereas this figure was as much as 72 % in the Trenčín region. This represents some 2.4 % of GDP on average in the Prešov region or 3 % of GDP in the Trenčín region for the period between 2009 and 2014. In 2014, the share of infrastructure expenditure reached 3.16 % in the Trenčín region and 2.34 % of GDP in the Prešov region (Chart 51). This is primarily attributable to the high costs of infrastructure projects when compared to projects in other sectors. It is also indicative of an ongoing infrastructure deficit in these regions and the lengthy process of tackling this problem.

In comparison with other regions, infrastructure expenditures in the Trnava region represented 0.6 % of GDP on average. The highest share was observed in 2012, at 1.03 %. In 2014, expenditures on infrastructure were the highest, representing 0.53 % of GDP. Industry had the second highest expenditures from SF and CF as a share of GDP standing at 0.52 %, and was followed by services at 0.45 %, human capital at 0.19 % and science and research at 0.13 % (Chart 53). Of the total expenditure in that year, expenditures on infrastructure accounted for 40 %. In this region, science and research expenditures were at 0.15 % of GDP on average, peaking at 0.21 % of GDP in 2013.
In the Žilina region, the absorption of funds gained the most momentum in 2011 and 2012 when it exceeded 3.5% of GDP. In 2010, absorption was slightly lower. The highest share in the uptake of financial resources from SF and CF was observed with respect to investments in infrastructure. In 2010, they accounted for 2.4% of GDP and, despite having followed a slightly downward trend since 2010, their share returned to 2.48% of GDP in 2014. Infrastructure investments as a share of GDP have been on a decline since 2010, gradually giving way to investments in industry, science & research and services. The turning point came in 2014. As a result of an accelerated uptake of financial resources from SF and CF, the Žilina region and the Bratislava region reported a year-on-year increase in absorption as a share of GDP. In 2014, this share reached 4.05% of GDP, in particular due to spending in infrastructure in the amount of EUR 199 million.

Investments flowing from SF and CF into industry were the highest in this region in 2012, reaching almost 0.84% of GDP. In general, investment in the industry of the Žilina region can be described as one of the highest in comparison with other regions.

Main findings

- In all regions except for Bratislava, infrastructure expenditures had the highest share in the region’s GDP. These expenditures have helped reduce, to a large extent, the existing infrastructure deficits by completing and reconstructing the transport and environmental infrastructure and by improving the amenities of the region. The secondary effect of these expenditures involved the creation of new jobs or maintaining the existing workforce in the construction sector.
- In all regions except for Bratislava, EU sources in combination with co-financing from public sources and the beneficiaries’ own sources accounted for a significant portion of the individual regions’ GDP. In some regions (Trenčín, Prešov and Banská Bystrica), the share of these sources in GDP is slightly higher than in other regions. This can be,
on the one hand, attributed to the nature of projects implemented and, on the other hand, to a relatively lower regional GDP in comparison with more advanced Slovak regions.

- The specific status of the Bratislava region also had an impact on the structure of supported sectors with a relatively even distribution of absorbed funds across individual sectors (infrastructure, human capital, industry, services and research & development) in proportion to the region’s GDP. An increase in expenditures on science and research or, more specifically, the science and research infrastructure, can be regarded positively, as it lays the groundwork for state-of-the-art research in the future. Modernisation of research equipment represents an essential factor which increases the potential of the Slovak science on the international science & research arena.

- The SF and CF spending relative to GDP has dropped in six regions in 2014. The only regions seeing an increase were the Bratislava region and the Žilina region. In the case of the Žilina region, this increase is primarily attributable to the completion of infrastructure projects worth EUR 199 million.

- As at the end of the programming period, 2015 is likely to see a more significant increase in the SF and CF spending in proportion to individual regions’ GDP due to the expected completion of a number of projects focusing primarily on infrastructure, industry, science and research as well as human capital.

- Bearing in mind the domestic budgetary constraints, the support from SF and CF had a significantly positive impact on the performance of the individual regions and helped mitigate the impacts of the financial and economic crisis faced by these regions.

Answer to the question

What is the share of the SF and CF spending under NSRF to GDP?

This evaluation question is answered by the main findings presented in the above paragraph.

5.13 To what extent has the effect of the long-term sustainability of existing and newly created jobs, driven by the SF and CF spending, been fulfilled in selected sectors?

Approach to evaluation

For the purposes of this evaluation, the HERMIN model was applied to estimate the number of the created and sustainable jobs in the sectors of construction, industry and market services at the NUTS 3 level. The number of created jobs represents the number of additional jobs created as a result of using cohesion policy support, i.e., in comparison with the scenario not involving the uptake of financial resources from SF and CF. In the applied HERMIN econometric model, sustainable jobs are defined as an average for jobs created during the last two years for the absorption of funds (2014 and 2015) and maintained for a period of three years (by 2018). The reporting of sustainable jobs uses a different method compared to the definition of sustainable jobs for the purposes of their reporting under projects and programmes financed from the SF and CF in line with the Central Coordinating Authority’s Methodology Guideline for reporting the number of jobs created; the reason is that a particular job is not distinguishable over a longer period of time from the macroeconomic perspective. In the case of analytical representation, this only constitutes the quantification of additional employment attributable to the effects of the SF
and CF absorption for every region and sector. In general, for instance, a job directly created in the construction sector may cease to exist, but the higher demand driven by the effects of absorption will necessitate the creation of a new job in the same region and sector. In this case we are calling it a sustainable job, even though it is not an identical job.

Analysis and its results

Under the scenario involving the absorption of funds, the total additional employment represented 103 000 jobs when compared to the scenario without funds absorption.\(^{35}\) The construction sector is expected to create over 35 000 additional jobs in 2013 as a result of spending financial resources from SF and CF on infrastructure. The industry sector maintains the slowest pace of creating new jobs. In 2014, this sector created more than 9 000 additional jobs as a result of drawing the financial resources from SF and CF. In 2015 this number should reach almost 11 000 additional jobs when compared to the scenario without the absorption of funds. In the market services sector, 44 000 additional jobs have been observed in 2014. In 2015, this sector is expected to employ additional 23 000 persons compared to a situation without the drawing of financial resources from SF and CF.

At the national level, some 103 000 additional jobs are expected to be created as at the end of the programming period as a result of drawing the financial resources from SF and CF; of this number, roughly 37 000 jobs should be sustainable.\(^{36}\) When broken down by sector, most of the jobs will be created in the market services sector, followed by the construction sector and the industry sector. The market services sector should additionally create 57 000 jobs as a result of the SF and CF implementation, with 24 000 jobs expected to be sustainable. The construction sector should create 35 000 additional jobs and, of this number, only 5 000 jobs will be sustainable. Given the nature of jobs in the construction sector, the number of sustainable jobs is the lowest. One of the specific aspects of the construction sector is that employment is limited by the duration of a particular project. Following the completion of any such project, there is a sharp drop in employment due to this sector’s high elasticity of demand. However, the construction sector indirectly creates jobs in other sectors of the economy as well. The total number of sustainable jobs in the construction sector is only 14 % of the expected number of jobs created. The lowest number of jobs will be created in the industry sector, but their sustainability is expected to be the highest. Interventions under otherwise unchanged external circumstances are therefore capable of creating permanent jobs. In total, some 11 000 additional jobs are expected to be created in the industry sector, with the estimated sustainability rate representing 98 %.

\(^{35}\) An average for the years 2014 and 2015. In 2015 alone, the model indicates as many as 124 000 jobs against the scenario without funds absorption, while taking into account the ability to complete the spending of funds at 89%. In 2014, the number of additional jobs represented 79 000 against the scenario without funds absorption. Uneven spending against the last year’s evaluation indicates a significant decline in the sustainability rate in particular to the number of jobs created only in the last year, i.e., 2015.

\(^{36}\) This involves a comparison between employment rates under the scenario with the absorption of funds (the actual figure) and the scenario without the absorption of funds in a given year or as an average for 2014 and 2015.
As suggested by model estimates, the drawing of financial resources from SF and CF will create some 10,000 jobs in the Bratislava region, with sustainable jobs accounting for 27%, i.e., up to 3,000 jobs. In the Prešov region, 16,200 additional jobs are expected to be created, of which 5,000 will be sustainable. The low rate of job sustainability representing 30% for all sectors is attributable to the high share of employment in this region’s construction sector, in which case the sustainability is estimated at 10% only.

Source: calculations by authors, ITMS

Chart 55: Estimate of created and sustainable jobs in the Slovak Republic

Source: calculations by authors, ITMS

Chart 56: Creation of new and sustainable jobs by region and sector, '000 persons (new jobs – an average for 2014 and 2015, sustainable jobs – as at 2018)
In the Košice region, we expect 10 700 additional jobs to be created primarily in the construction and market services sectors against the scenario without SF and CF implementation (Chart 56). Almost 3 000 sustainable jobs are estimated in the Košice region, mostly in the market services and industry sectors. In the Žilina region, we expect 18 800 additional jobs to be created, with more than 7 000 being sustainable jobs, particularly in the services and industry sectors. Almost 11 000 additional jobs should be created in the Banská Bystrica region and nearly 4 000 of them will be sustainable, mainly in the market services sector. The number of additional jobs in the Nitra region will represent 9 600, of which more than 4 000 will be sustainable in the long term, primarily in the services sector (2 900 jobs). There will be fewer jobs sustained in the construction sector (600 jobs) and the industry sector (600 jobs). In the Trnava region, 8 700 additional jobs are expected to be created, of which sustainable jobs should account for 55%. The Bratislava region is expected to have the lowest number of jobs created. More detailed data on the created and sustainable jobs is provided in Annex C13.

Impact of the uptake of financial resources from SF and CF on unemployment rates at the national and regional levels

The positive impact of the drawing of financial resources from SF and CF on the creation of jobs has naturally influenced the unemployment rate in individual regions. It can be noted that the implementation of cohesion policy has contributed to lower unemployment rates in all regions. In 2009, the impacts of the economic and financial crisis have negatively affected all regions of the Slovak Republic, albeit with a varying degree of intensity. It was in particular the uptake of financial resources from SF and CF which helped significantly mitigate the negative impacts of the crisis in the subsequent years.

The impact of the funds absorption on unemployment rate at the national level is shown for illustrative purposes in Chart 57. The expected creation of jobs driven by SF and CF indicates a decline in the unemployment rate by some 3 to 4 percentage points between 2010 and 2014. From an analytical perspective, this confirms that the negative impact of the crisis on Slovakia’s labour market would have been even worse without the implementation of the funds.

Chart 57: Impact of the drawing of financial resources from SF and CF on unemployment rate at the national level between 2007 and 2015 (illustrative)
Main findings

- In 2014, the total additional employment driven by the SF and CF spending represents some 79,000 jobs. In the construction sector, more than 35,000 additional jobs were created in 2014, whereas in the industry sector and the market services sector, the number of additional jobs created was 8,000 and, respectively, 45,000 when compared to the scenario without the implementation of SF and CF.

- In 2015, more than 120,000 additional jobs are expected to be created, of which 40,000 (33%) should be sustainable.

- At the end of 2018, the job sustainability rate is expected to be the highest in the industry sector (98%) and the market services sector (42%), with the construction sector having the lowest sustainability rate (14%). In Slovakia, the ratio between sustained jobs and created jobs will be roughly 36%.

- At the end of 2015, the highest number of jobs created due to the implementation of SF and CF is expected in the regions of Trenčín, Prešov, Košice and Žilina.

- At the end of 2018, the highest share of sustainable jobs at NUTS 3 level is expected in the Trnava region (45%), the Trenčín region (45%), the Nitra region (43%), the Žilina region (38%) and the Banská Bystrica region (34%).

- Without the drawing of financial resources from SF and CF, the estimated unemployment rate at the national level would have been 3 to 4 percentage points higher in the period between 2010 and 2014.

- The less evenly distributed absorption of funds and the expected rapid increase in their implementation in the last year have slightly reduced the sustainability rate of the created jobs. When taking into account only the jobs created in the last year of funds absorption, their sustainability would only be slightly above 30%.

Answer to evaluation question

To what extent has the effect of the long-term sustainability of existing and newly created jobs, driven by the SF and CF spending, been fulfilled in selected sectors?

The implementation of cohesion policy has substantially contributed to the additional creation or sustainability of jobs and to mitigating the impacts of the economic crisis on employment. Without the uptake of financial resources from SF and CF in the period between 2010 and 2014, the unemployment rate at the national level would have been 3 to 4 percentage points higher than the observed values. We expect the drawing of financial resources from SF and CF to induce the creation of more than 103,000 additional jobs at the end of the programming period (an average for the years 2014 and 2015), of which some 37,700 jobs should be sustained until 2018. In terms of sectors, the highest job sustainability rate will be achieved in the industry sector (98%) and the market services sector (42%), with the lowest figure expected in the construction sector (14%).
6 Findings and conclusions

After updating the evaluation with the drawing of financial resources from SF and CF as of 31 December 2014, a slightly different development against the assumptions from 2014 has been observed. In 2014, the overall absorption was down almost EUR 300 million against the previous year. According to the assumed scenario based on which the drawing of funds would be completed at 89%, this implies the need to increase the actual spending of funds in 2015, which poses a high risk of encountering problems with the absorption capacity of regions, the labour market and the potentially lower efficiency of funds expended (through the demand pressure on the prices of certain goods and services). Based on model estimates, decelerated drawing of funds and their uneven regional distribution in 2014 caused the GDP growth potential to decline by some EUR 1.4 billion in current prices at the end of 2015 against the last year’s assumptions.

Lower spending of financial resources from SF and CF in 2014 has translated into generally lower positive effects in almost all observed indicators in comparison with the last year’s assumptions. Due to a lower volume of GDP generated in the Slovak Republic against the previous evaluation and the Government’s expectations about the ability to complete the spending of SF and CF at an unchanged level of 89%, the expected effect in 2015 can be described as the most significant so far. However, the ability to absorb funding at a level that is 60% higher than that seen in 2013, i.e., the most successful year to date, is very questionable. We would like to draw attention to the fact that such absorption would mean allocating funds in certain regions at a level of almost 5% of their regional GDP. We expect this objective to be revised, assuming that the actual spending of financial resources from SF and CF will likely be lower at the end of the programming period. Based on previous developments it seems that the actual spending could be anywhere around 80% at the end of 2015, unless any additional problems with the drawing of funds arise.

Despite these facts we can still say that, based on the outcomes from evaluation of the SF and CF effects by means of an econometric model (HERMIN), the use of the cohesion policy resources during the 2007-2013 programming period had a statistically significant and positive impact on the Slovak economy. The effects of using EU’s aid have begun to materialise as late as after 2009 in connection with the actual spending of financial resources within the supported projects. There is a direct correlation between the volume of the SF and CF spending and the magnitude of the impact on macroeconomic indicators at the national and regional level, with a relevant factor being the thematic focus of support.

The global financial and economic crisis has had a significant impact on the overall development of the economy. The importance of cohesion policy has been fully reflected in mitigating the negative impacts of the crisis on the Slovak economy or in restoring economic growth. The effects of SF and CF can be best demonstrated by the gross domestic product (GDP) and gross value added (GVA) indicators. Both of them are composite indicators which are capable of indicating the overall performance of the economy. In 2014, the additional cumulative GDP growth driven by the SF and CF spending in Slovakia stood at 5.6%, and in 2015 it should reach some 8.3%. Cumulative GDP growth represents the difference between GDP generated with the use of resources from SF and CF and the scenario without the SF and CF spending in a given year. It was interesting to find that the real benefits of cohesion policy, as quantified by means of an ex-post analysis, had exceeded the preliminary estimates of effects presented in the ex-ante evaluation of the National Strategic Reference Framework (2006). This was in particular due to an unexpected slump in the performance of Slovakia’s economy in 2009.
and the significantly lower rates of economic growth in the subsequent years in comparison with
the pre-crisis period. All these facts underlined the importance of funding from SF and CF as a
source of public investments in the Slovak economy. Had the overall effect of drawing financial
resources from SF and CF been assessed as a whole for the years 2007-2015, it would account
for some 30 % of GDP, with the volume of funding from EU sources being roughly half of this
value. However, the long-term multiplier effects are significantly higher.

An increased household consumption as the result of a net effect of the drawing of financial
resources from SF and CF was observed as late as in 2009. The household consumption,
primarily driven by additional employment growth, directly reflects the impacts of SF and CF
on the living standards of the population and households. In 2010, an increase in additional
household consumption was observed in all regions, including due to the increased spending of
available resources and the creation of new jobs. Despite that the actual growth in household
consumption has remained, due to post-crisis problems in the labour market, in negative
numbers until as late as 2013. In the subsequent years, household consumption continued to
rise, with a significant increase observed as late as 2014, while in 2015 it is expected to increase
further as a result of efforts to maximise the spending of funds allocated for the 2007-2013
programming period and the gradual recovery of the macroeconomic climate. According to
model simulations, the absorption of EU funds could cause the nominal household consumption
to increase by 7.6 % in 2015 against the scenario not involving the spending of EU funds.
Without having implemented this support, the employment rate and the living standards of the
population would decline rather than stagnate (as was the case in particular between 2009 and
2013).

Slovakia’s position in the Global Competitiveness Report rankings has been worsening in the
long run. Since 2007, the country fell by 34 positions, with a decline observed in most of the
assessed competitiveness factors. Several areas subject to evaluation have been assessed in
terms of overall environment, such as macroeconomic, legal and institutional, and have an
impact on the efficiency in the use of SF and CF in Slovakia even though they are not
systematically addressed and counterbalanced through interventions from SF and CF. The factors
that have affected Slovakia’s worsening position in terms of competitiveness include the quality
of institutions, the quality of the education system, the tax system as well as the efficiency and
flexibility of the labour market. In order to evaluate competitiveness at the regional level, labour
costs and labour productivity were used as indicators for this purpose. Based on the results of an
analysis of quantitative indicators (costs and labour productivity), it can be noted that the use of
financial resources from the EU had a slightly positive impact on the competitiveness of
regions.

The NSRF strategic objective to “Considerably increase, by 2013, the competitiveness and
performance of Slovakia’s regions and economy, and to increase employment while respecting
sustainable development” has been met only partially.

The process of Slovakia’s real convergence to the EU-28 average has been facilitated by the
uptake of SF and CF in all regions, except for Banská Bystrica, where the divergence process
has only been mitigated. Without the funds drawn under cohesion policy, the convergence
process would have come to a halt in as many as six out of eight Slovak regions. The Bratislava
region, as the economically strongest region, had considerably contributed to maintaining this
level; without this region, the convergence process would follow a negative trend. The analysis
confirmed Slovakia’s continuing convergence to the EU-28 average in the 2007-2013
programming period, which was also facilitated by the Cohesion policy resources. The
convergence trend is expected to continue also in 2014 and 2015, when the convergence level
should account for 77% of the EU-28 average (measured by GDP per capita in PPP). A slowdown in the spending of funds in 2014, including the structure of spending, had a negative impact on Slovakia’s real convergence to the EU-28 average, but, on the other hand, it positively contributed to the reduction of regional divergence. The model results imply that, even though the assumed high absorption of funds in the last year would have a significant impact on Slovakia’s convergence, a considerable portion of effects could be short-term in nature.

The cohesion policy impact on employment both at the national and regional level can be described as significant. The global financial and economic crisis has significantly aggravated the problems and imbalance on the labour market. The Slovak labour market (employment and unemployment) was hit by the negative effects of the crisis with a certain delay, but even more intensely. The labour market continued to follow a negative trend after 2009, even though some 79 000 additional jobs have been created by 2014 with the help of financial resources from SF and CF. Without the support from SF and CF, there would be a significant drop in employment. Based on the econometric model, investments from SF and CF should generate a total of more than 120 000 additional jobs by 2015. In terms of sustainability, the average number of additional jobs was 103 000 in the last two years of the EU funds absorption, of which 36% were sustainable jobs (maintained for at least three years after the end of the programming period).

The highest number of additional jobs will be created in the market services sector where the multiplier effect of a higher growth and demand for job creation will be the most evident. As a result of the implementation of cohesion policy, the highest share of additionally created jobs will be observed in the construction sector. In this sector, more than 35 000 additional jobs are expected to be created in 2015, but their sustainability is lower than in other sectors, i.e., only 14%. The effect of SF and CF implementation on employment in the industry sector is noticeably different. In the last year of funds absorption (2015) we expect 10 000 additional jobs to be created in the industry against the scenario without the drawing of financial resources from SF and CF, and most of the jobs created should be sustainable.

As regards job creation at the NUTS 3 level, the spill-over effects of economic growth between individual regions are not adequately considered in the model. This limitation can be particularly observed in the construction sector where the significant spending of funds on infrastructure projects is the reason behind overestimated employment in the given region and total production. The construction sector is characterised by one of the highest inter-regional labour mobility rates, which is an aspect that needs to be taken into account in the interpretation of model estimates. Labour migration has a significant impact on the Bratislava region, whereas in other regions, mobility is rather low with a tendency towards intra-regional mobility.

As a comprehensive indicator for evaluating the effectiveness of SF and CF absorption, the CSF multiplier – expressed in EUR – shows the additional effect of each euro spent from SF and CF on GDP. The value of the CSF multiplier was the highest in the Bratislava region during the entire programming period (3.2 in 2015) which is in particular due to the structure of the financial allocation and its volume relative to the region’s GDP. Compared to other regions, the Bratislava region had the lowest absorption of funds, whereas the share of funding for infrastructure was also the lowest among all regions. A higher volume of investments in science and research lays the groundwork for a higher potential growth. The high CSF multiplier value can also be attributed to this region’s level of development where even a small amount of absorption brings a high potential growth. On the other hand, the lowest CSF multiplier value
was observed in the Banská Bystrica region, standing at 1.7 in 2015. In other regions, the CSF multiplier remained between 1.8 and 2.3 in 2015.

In addition to the structure of SF and CF investments in terms of sectors, the ability to generate additional effects (benefits) in the economy is also significantly influenced by the time aspect of funds absorption. A lower absorption capacity is one of the reasons why Slovakia will not be able to spend all resources allocated for the 2007-2013 programming period. A more balanced absorption of funds during the programming period would have led to stronger cumulative effects of cohesion policy on the Slovak economy, and would probably have contributed more to mitigating the negative impacts of the global economic and financial crisis in Slovakia and to accelerating the recovery process in the post-crisis economy.
7 Recommendations

In the context of the main findings and conclusions, recommendations have been made to increase the efficiency of SF and CF uptake and maximise the benefits for Slovakia’s development at the national and regional level, as well as to improve the planning and implementation process in particular during the subsequent programming period between 2014 and 2020. The main recommendations are based on information from two evaluations that have been carried out and can be summarised as follows:

- In terms of allocations and the expected effectiveness of funds absorption, the objectives of cohesion policy and support for economic growth at the national and regional level can be conflicting. For this reason, it is important to align the cohesion policy objectives with their impacts on economic development at the national and regional level (national vs. regional convergence) within the preparation of a comprehensive development policy. Better links between national policies and the cohesion policy objectives will facilitate greater efficiency and their long-term sustainability even after EU funding has come to an end.

- The efficiency of investments from SF and CF, including the ability to generate additional effects, is affected by the environment in which such investments are made. In order to maximise the positive effects of cohesion policy, it is necessary to pay special attention to the quality of national policies, the legislative framework, implementation environment and other factors that are partially included in ex-ante conditionalities. In order to prepare and implement reforms in areas that are decisive for the competitiveness of the country and its regions, it is necessary to use ESIF resources and, at the same time, monitor the introduction of reforms and their impacts at the national level.

- The SF and CF interventions helped mitigate the negative impacts of external factors to a considerable extent; however, these interventions were not accompanied by structural reforms in the labour market, education system, business environment, etc. and, for this reason, their potential effect on the economy has been reduced. It is therefore necessary to intensify efforts in these areas, including the use of funding from EU, and make the support from SF and CF conditional upon the reforms of systems and national policies. For instance, this could involve support for education infrastructure which would be linked to promoting human resources (high-quality teachers with adequate financial and non-financial motivation), modern curricula and methods as a necessary requirement for achieving synergies in this area. Furthermore, support for increasing the competitiveness of enterprises must be accompanied by economic policy measures establishing stable and predictable conditions for pursuing long-term investment plans (investments in company research and development, as well as innovation development and creation). The potential effects on the business environment are negatively affected by frequent changes in labour legislation and other relevant laws, by changes in tax and contribution rates, lengthy resolution of commercial disputes, etc.

- As regards infrastructure, the implementation of SF and CF is capable of creating short-term jobs. In pursuing the sustainable employment objective, it is therefore advisable to concentrate the resources primarily in industry and services, where the sustainability of jobs is higher. However, it is also necessary to implement such programmes that would not significantly distort competition at the level of individual industries, sectors or regions.
Investments in infrastructure are essential in the long term and help reduce the existing infrastructure deficit while improving accessibility. The pace of construction, in particular transport infrastructure (motorways and expressways), has been insufficient for a long time and, therefore, it is necessary to make sure that transport projects be ready for funding during the 2014-2020 programming period. Without an infrastructure of sufficient quality, the regions, and especially those that are economically underdeveloped, cannot generate additional growth despite having other comparative advantages. For this reason it is necessary to create, at the national level, efficient mechanisms that will guarantee the coordination and preparedness for building strategic infrastructure.

With respect to building a knowledge economy, sufficient financial resources must be allocated from national, public and private sources (beyond SF and CF) to ensure that investments in science, research and innovation which were implemented in the period between 2007 and 2013 are sustainable in the long run. Expenditures in this area have the highest multiplier effect on the economy in the long run. However, their long-term return requires an environment that remains stable for a long time. In this area, stabilised human resources, as well as sufficient and stable funding from public and private sources (institutional or contractual), represent an essential condition for their positive impact on the national economy.

As regards the importance of the SF and CF spending, it must be stressed that these sources are complementary to national sources. For some national policies, the financial resources from SF and CF have become the key source of funding, in particular as regards development activities. National policies should be prepared in a way that sufficient funds are allocated for their implementation in synergy with the drawing of financial resources from SF and CF.

In terms of promoting the private sector, it is necessary to focus on supporting those projects which will improve the overall environment for entrepreneurship without any negative impacts on competition. Private sector entities should primarily be supported through repayable forms of aid that minimise the distortion of the market and competition.

In order to ensure efficient implementation based on the example of the EC and other Member States, analytical potential should be tapped more extensively, for instance, by applying econometric and optimisation models. Econometric models are widely used in the preparation of national policies and programmes, as well as in the evaluation of their effects. In the cohesion policy context, it is advisable to supplement the macroeconomic analyses of the SF and CF effects with other qualitative assessments.

As regards the efficiency and timetable of absorption, it is necessary to regularly update the partial and overall objectives in terms of the drawing of funds under operational programmes as well as in regions. By using methods conducive to the decision-making processes it is possible to verify the feasibility of objectives within the individual periods. Incomplete absorption of financial resources from SF and CF has a clearly negative impact on the future growth of the economy and will reduce the potential effects in terms of overall and regional convergence.

In addition to the volume and structure of investments broken down by sectors, it is also the readiness to absorb funds which significantly affects the ability to generate
additional effects of SF and CF and facilitate the development of Slovakia and its regions. Considering the importance of EU’s assistance and its demonstrable benefits for economic development, it is necessary to make sure that available resources are drawn right from the start of the 2014-2020 programming period. This requires the preparedness of the entities responsible for the management, implementation and control of European Investment and Structural Funds (ESIF), as well as the absorption capacity of beneficiaries. One of the important aspects in accelerating the use of available resources is the need to efficiently reduce the administrative burden in processes associated with the implementation of cohesion policy.

- From an analytical perspective, it is necessary to create, within the ITMS, a harmonised set of indicators that are necessary for assessing the efficiency in the implementation of projects. The spatial and sector level indicators represent important data for assessing the effects of SF and CF. For the most part, this involves disaggregating the data down to the regional level (NUTS 3), as well as a more detailed categorisation of beneficiaries and their suppliers based on the classification of their economic activities.

- In view of the fact that the NSRF’s competitiveness objective has not been fulfilled, it is necessary to strengthen the SF and CF interventions in areas that have the potential to improve the existing state of play (such as the quality of public administration, science, research and innovation, education, quality of human resources).

- Due to uneven implementation of resources in the creation of jobs during the programming period, their sustainability and efficiency is lower. Every region has a different absorption capacity for receiving financial resources from SF and CF, with a varying degree of effectiveness in terms of operational programmes. These factors should be taken into account in the schedule for the publication of calls, and the calls of the same type within the same region should be spread over a longer period of time.
8 Reference literature

Dijkstra et al., (2011). Regional competitiveness can be defined as the ability to offer an attractive and sustainable environment for firms and residents to live and work.

9 List of acronyms, charts and tables in the document (to be supplemented later)

9.1 List of acronyms
BA Bratislava region
BB Banská Bystrica region
CSF Community Support Framework
DG JRC Directorate-General Joint Research Centre
DG Regio Directorate-General for Regional and Urban Policy
EC European commission
ERDF European Regional Development Fund
ESF European Social Fund
EU European Union
ETC European Territorial Cooperation
HP Horizontal priority
ICT Information and Communications Technology
KE Košice region
CF Cohesion Fund
MRC Marginalised Roma communities
NR Nitra region
NSGR Nitra Self-governing Region
NSRF National Strategic Reference Framework
OP IS Operational Programme Information Society
OP C&EG Operational Programme Competitiveness and Economic Growth
OP E Operational Programme Education
OP R&D Operational Programme Research and Development
OP EaSI Operational Programme Employment and Social Inclusion
RES Renewable energy sources
PPP Purchasing power parity
PO Prešov region
MA Managing authority
Europe 2020 Europe 2020 strategy
FCA Financial Control Administration
SF Structural Funds
TN Trenčín region
TT Tmava region
SD Sustainable development
ZA Žilina region
9.2 List of tables

Table 1: Year-on-year growth in regional GDP, c.p. (2012-13 update, 2014 estimate) in % 12
Table 2: Sources of Cohesion Policy funding and their drawing as at 31.12.2014 16
Table 3: Drawing of SF and CF funds by operational programme as of 31.12.2014, in million EUR................................. 17
Table 4: CSF multipliers by individual regions .. 23
Table 5: Differences in the drawing of EU funds under alternative scenarios 1 and 2, EUR million ... 32
Table 6: Differences in gross value added under alternative scenarios, EUR million, current prices (cumulatively for all sectors) .. 32
Table 7: Differences in CSF multipliers in the results under alternative scenarios 33
Table 8: Difference in employment under alternative scenarios, '000 persons .. 33
Table 9: Difference in gross value added produced in the construction sector under alternative scenarios, EUR million, c.p. ... 34
Table 10: Difference in gross value added produced in the industry sector under alternative scenarios, EUR million, c.p. .. 34
Table 11: Difference in gross value added produced in the market services sector under alternative scenarios, EUR million, c.p. .. 34
Table 12: Difference in EU funds uptake, EUR million, c.p. ... 35
Table 13: Difference in GDP formation, EUR million, c.p. ... 35
Table 14: Difference in employment, '000 persons .. 35
Table 15: Difference in gross value added in construction, EUR million, c.p. 36
Table 16: Difference in gross value added in industry, EUR million, c.p. ... 36
Table 17: Difference in gross value added market services, EUR million, c.p. ... 36
Table 18: Difference in real GDP growth driven by the drawing of SF and CF, in p.p. 40
Table 19: Growth in household consumption driven by SF and CF spending – cumulatively for 2015 .. 44
Table 20: Development in GDP per capita at PPP compared against the EU-28 average at the national and regional level - scenario including SF and CF spending (e - estimate, f - forecast) in % ... 61
Table 21: Development in GDP per capita at PPP compared against the EU-28 average at the national and regional level - scenario excluding SF and CF spending (e - estimate, f - forecast) in % ... 61
Table 22: SF and CF annual contribution to convergence towards the EU-28 average, p.p. 63
Table 23: Share of funds drawn from an EU source compared against region’s GDP in % 68
Table 24: Cumulative CSF multiplier by NUTS 3 regions ... 70
Table 25: Share of additional growth in gross value added generated by the SF and CF implementation, Slovakia, in % .. 72
Table 26: Share of the business sector, public sector and SF and CF contribution to value added in % .. 76
Table 27: Development in indicator targets under the NSRF between 2007 and 2013 79
Table 28: Allocation and uptake of cohesion policy funds relevant to the Smart Growth objective at 31 December 2014 (EU funds) ... 82
Table 29: Allocation and uptake of cohesion policy funds relevant to the Inclusive Growth objective at 31 December 2014 (EU funds) ... 82
Table 30: Allocation and uptake of cohesion policy funds relevant to the Sustainable Growth objective at 31 December 2014 (EU funds) ... 84
9.3 List of charts

Chart 1: Slovakia’s economic growth in 2006-2014 (2015 - forecast), real GDP growth (left axis) and nominal GDP growth in billion EUR (right axis), ESA 2010 ... 8
Chart 2: Comparison of employment (left axis) and employment growth (right axis) under ESA2010 and SLFS, ‘000 persons ... 10
Chart 3: Comparison of the creation of value added by economic sectors between 2006 and 2014, in million EUR at c.p., ESA 2010 ... 11
Chart 5: Regional convergence (GDP per capita at PPP) to EU-28 average (e-estimate) 13
Chart 6: Creation of gross value added by regions, in million EUR at c.p. 14
Chart 7: Number of employed by individual regions, national accounts, '000 persons 15
Chart 8: Comparison of cumulative GDP growth increment attributable to SF and CF implementation ... 18
Chart 9: Comparison of the anticipated effects of the SF and CF implementation on additional output of different sectors in 2013 based on the ex-ante and ex-post evaluation .. 19
Chart 10: Drawing of SF and CF at the regional level, in million EUR, 89-% scenario 22
Chart 11: CSF multipliers by individual regions ... 22
Chart 12: Number of new jobs created through SF and CF investments, '000 persons, 89-% scenario ... 24
Chart 13: Development of additional gross value added in the construction sector in individual regions, million EUR ... 24
Chart 14: Development of additional gross value added in industry in individual regions, million EUR ... 25
Chart 15: Development of additional gross value added in market services in individual regions, million EUR ... 25
Chart 16: Gross value added at c.p., EUR million ... 26
Chart 17: Cumulative CSF multiplier for Slovakia ... 27
Chart 18/a-c: Gross value added in construction, industry and market services, current prices, EUR million ... 28
Chart 19: Development in employment in Slovakia driven by the SF and CF implementation, '000 persons ... 29
Chart 20/a-c: Impact of the SF and CF spending on employment in construction, industry and market services, '000 persons ... 30
Chart 21: SF and CF spending, EUR million,100 % scenario .. 31
Chart 22: Comparing estimated level of CSF multiplier under the current evaluation and the 2014 evaluation and both alternative scenarios ... 37
Chart 23: SF and CF effect on GDP at the national level in EUR million at current prices (left axis) and in % (right axis) ... 39
Chart 24: Additional cumulative GDP growth driven by the drawing of SF and CF, in %, current prices ... 40
Chart 25: Estimated real growth in GDP with and without SF and CF, in % 41
Chart 26: Additional employment in Slovakia driven by the drawing of SF and CF, '000 persons ... 42
Chart 27: Number of new jobs by sectors in 2015, '000 persons 43
Chart 28: Growth in household consumption driven by SF and CF spending, EUR million 44
Chart 29: Growth in average wage driven by SF and CF spending, in EUR 45
Chart 30: Slovakia’s ranking in global competitiveness and quality of business environment between 2007 and 2013 (lower is better) ... 48
Chart 31: Change in Slovakia’s overall ranking under the Global Competitiveness Index between 2007 and 2014 .. 49
Chart 32: Change in Slovakia’s Doing Business ranking between 2007 and 2015 50
Chart 33: Unit labour costs with and without SF and CF spending 51
Chart 34/a-d: Labour costs at NUTS 3 level with and without SF and CF spending 52
Chart 35/a-d: Unit labour costs at NUTS 3 level with and without SF and CF spending 53
Chart 36/a-h: Labour productivity by individual regions with and without SF and CF spending, in EUR ‘000, current prices ... 55
Chart 37: Model comparison of GDP per capita at PPP development compared to the EU-28 average under scenarios with and without the SF and CF spending (2012-2013 forecast, 2014-2015 outlook) .. 60
Chart 38: Estimated cumulative contribution of the drawing of financial resources from the SF and CF to the convergence indicator- GDP per capita at PPP (2012-2014 estimate, 2015 forecast), percentage points ... 62
Chart 39: Model comparison of GDP per capita at PPP convergence towards the EU-28 average under scenarios with and without SF and CF spending at the NUTS 2 level, excluding the Bratislava region (2012-2013 forecast, 2014-2015 outlook) .. 63
Chart 40: Comparison of regional convergence measured by sigma coefficient in Slovak regions .. 64
Chart 41: Shares of individual regions in SF and CF spending ... 67
Chart 42: Drawing of EU funds (including co-financing) by NUTS 3 regions, EUR million 68
Chart 43: Comparison of cumulative uptake and additional GDP in 2014 and 2015 by NUTS 3 regions and for Slovakia, ratio to the 2007 GDP ... 69
Chart 44: Additional share of gross value added of the construction sector in the total gross value added generated by the SF and CF spending ... 73
Chart 45: Additional share of gross value added of the markets services sector in the total gross value added generated by the SF and CF spending ... 74
Chart 46: Change in the share of the business sector in the total gross value added between 2009 and 2014 .. 77
Chart 47/a-b: Uptake of financial resources from the SF and CF in Slovakia between 2008 and 2014, EUR million .. 86
Chart 48: Year-on-year growth of Cohesion policy interventions from SF and CF in Slovakia between 2009 and 2014, in % .. 87
Chart 49: Annual uptake of financial resources from SF and CF in the Slovak Republic as a share of GDP, in % .. 88
Chart 50: The share of Cohesion policy spending on regional GDP in % 89
Chart 51/a-b: Share of SF and CF on GDP in the Banská Bystrica region and the Bratislava region, by sector .. 90
Chart 52/a-b: Share of SF and CF on regional GDP in the Košice region and the Nitra region, by sector .. 91
Chart 53/a-b: Share of SF and CF on regional GDP in the Prešov region and the Trenčín region, by sector .. 92
Chart 54/a-b: Share of SF and CF on regional GDP in the in the Trnava region and the Žilina region, by sector .. 93
Chart 55: Estimate of created and sustainable jobs in the Slovak Republic 96
Chart 56: Creation of new and sustainable jobs by region and sector, ‘000 persons (new jobs – an average for 2014 and 2015, sustainable jobs – as at 2018) .. 96
Chart 57: Impact of the drawing of financial resources from SF and CF on unemployment rate at the national level between 2007 and 2015 (illustrative) ... 97
Annex A: The HERMIN model

A1. Reasons for selecting the econometric model
A.1.1 The RHOMOLO model
A.1.2 The QUEST model
A.1.3 The HERMIN model
A.1.4 The MASST model
A.1.5 The EuImpactMod model
A2. Reasons for selecting the HERMIN model
A3. Selected HERMIN model applications
A.1.6 HERMIN model applications in Slovakia
A.1.7 Selected HERMIN model applications abroad
A4. Keys aspects of the HERMIN model
A5. Reference literature to Annex A

A1. Reasons for selecting the econometric model

The cohesion policy impacts are analysed by means of several qualitative and quantitative methods which include, *inter alia*, model simulations and evaluations based on econometric models. The basic motivation behind analysing the impacts of SF and CF is to find answers to issues that are directly related to the effectiveness of cohesion policy in terms of reducing regional disparities, effective distribution of financial resources and the need to reform the cohesion policy in the event of new Member States joining the EU. The first attempts at evaluating the cohesion policy by means of an econometric model involved the HERMES model-based simulations. However, this model was used for Ireland only. As a successor to HERMES, the HERMIN model increased the geographical coverage within the EU. It was used to evaluate the impacts of SF and CF in Ireland and Portugal in early 1990s, with Greece and Spain being added later on. In the first decade of the new millennium, the HERMIN model was created by the European Commission for all EU-27 Member States. In addition to the HERMIN model, the Commission also used the demand-oriented QUEST model (Varga a in’t Veld, 2009) for analysing the cohesion policy. The most recent efforts are focusing on finding a successor to these models, with various alternative types of modelling approaches being developed for this purpose (such MASST, EuImpactMod, RHOMOLO, GMR-EUROPE, etc.); however, their real applicability remains a problem.

Majority of functional regional models in Europe use the NUTS-2 regional breakdown. Following the decentralisation implemented in Slovakia in 1996, the functional regions are those classified as NUTS-3, i.e., self-governing regions. For this reason, the evaluation was carried out at the level of NUTS-3 regions and at the national level.

The European Commission’s Directorate-General for Regional and Urban Policy (DG REGIO) has been using macroeconomic models to evaluate the cohesion policy’s impacts on EU Member States and regions for several decades. The most frequently used models were HERMIN and QUEST III. HERMIN was developed in the 1980s and has been regularly used and updated ever since then. Being a macroeconomic structural model, its parameters are based on econometric estimates. The QUEST III model has been developed and used by the Directorate-General for Economic and Financial Affairs (DG ECFIN). It is a dynamic stochastic
general equilibrium (DSGE) model with microeconomic foundations. Both of these models have been used to great success for several decades, with the only downside being that they could deliver only macro-level results. However, DG REGIO also needed to examine the impacts at the regional level. For this purpose, the possibilities of extending the existing models have been investigated. The European Commission has arrived at a conclusion that none of the existing models would be capable of accomplishing all the tasks set out by the Commission and that a new regional model would have to be developed. For this purpose, the Commission and the Joint Research Centre (JRC) in Seville are jointly developing the RHOMOLO model (Rhomolo: A Dynamic Spatial General Equilibrium Model for Assessing the Impact of Cohesion Policy, JRC Technical Report, 2013) as a comprehensive successor to the existing models, i.e., one that is capable of covering the regional and multi-sectoral aspects. The main advantages of this model include its broad coverage and ability to take into account the so-called spatial spill-over effects and interdependencies between regions. On the downside, it requires a higher quantity of input data which, in many cases, are not covered by or reported in national statistics in the required structure. In response to this situation, a new regional model built on the HERMIN model foundations has been developed by the Wroclaw Regional Development Agency (WARR) in Poland. The relatively simple structure is the key strength of this regional econometric model, allowing to analyse the impacts of cohesion policy at the regional level. On top of that, it can be applied with success to small and open economies even if data resources are limited. The main downside is that the above spill-over effects are not taken into account.

Other models applied in the modelling of the cohesion policy impacts include, for instance, the EUImpactMod or the MASST model. EUImpactMod has been specifically designed for the Visegrad Four countries by the Polish Institute for Structural Research (IBS) as an alternative to the HERMIN model. It is a DSGE model that has been calibrated for microeconomic and macroeconomic data. The key objective was to investigate how cohesion policy for the V4 countries affects the EU-15 countries. According to an analysis, cohesion policy in V4 countries brings a significant increase in their performance and, consequently, consumption, investments and demand which is in particular covered by goods and services from EU-15 countries.

The MASST model (macroeconomic, sectoral, social and territorial) represents a more complex alternative as it combines an econometric model of growth at the national and the NUTS 2 regional level with a simulation algorithm that is primarily geared towards forecasting the medium- and long-term trends in real economic growth and selected demographic variables, such as population or migration in each of the EU-27 countries and for each of the 259 regions in European countries. It is unique in that it applies the top-down approach, i.e., regional growth which depends on national growth and, consequently, due to its integrated feedback mechanism and the bottom-up approach, the national economy growth comes as a function of regional growth with a certain lag (one year). The equations at the aggregate macroeconomic level are estimated using a standard econometric approach, whereas the regional sub-model equations include spatial effects. The downside is that this model requires a large amount of data both at the national and regional level.

A.1.1 The RHOMOLO model

The regional holistic model labelled RHOMOLO is currently developed and run by the EC, JRC and the Netherlands Organization for Applied Scientific Research (TNO). It is a multi-regional and multi-sectoral dynamic general equilibrium model with endogenous growth engines. The
model is currently being tested in five European countries at the level of regions: Germany (NUTS 1 because of the small size of NUTS 2 regions), Poland (NUTS 2), Slovakia (NUTS 2), the Czech Republic (NUTS 2) and Hungary (NUTS 2). The model integrates the economic, social and environmental dimensions in a unique integrated framework. RHOMOLO can be used both for ex-ante and ex-post evaluation of cohesion policy impacts. It also makes it possible to simulate and compare different policy scenarios. The most important features of the model are:

- linking regions within a new economic regional framework;
- having dynamic features with endogenous growth engines;
- including detailed public sector and allowing to simulate interventions from this sector;
- incorporating a multi-level governance system.

Each EU country in the RHOMOLO model is disaggregated down to several regions, which are connected by interregional trade flows of goods and services as well as interregional migration flows. Interregional trade depends upon the preferences of consumers for buying goods from particular destinations and upon the prices of goods and associated transportation costs. Interregional migration flow takes place only within the same country and depends primarily upon the relative difference between the real wages in the region and the country average, as well as upon the relative difference between the rate of unemployment in the region and the country average. Regions with higher real wages and lower unemployment rates will have higher net immigration. Each NUTS 2 (or NUTS 1) region includes various economic agents, such as households, production sector, regional and federal government.

RHOMOLO is a dynamic model which generates various social, economic and environmental outputs by 2030. The economic growth rate is determined by investments in research and development (R&D) and investments in education. By investing in R&D and education each region is able to catch up faster with the technological leader region. Time periods in RHOMOLO are linked by savings and investments. By the end of each time period, households save a certain amount of money which goes to the investment bank and is distributed as investments between the production sectors of the various regions. The allocation of the investment depends on the sector’s financial profitability. This model is currently being tested as a comprehensive model for simultaneous estimates of impacts in all regions observed and, for the time being, this model type is not expected to be developed for individual countries. In view of the above facts, it is not possible to use this model for the purposes of evaluating SF and CF impacts in Slovakia.

A.1.2 The QUEST model

The QUESTIII model is a global macroeconomic model DG ECFIN uses for macroeconomic policy analysis and research. It is a New-Keynesian dynamic stochastic general equilibrium (DSGE) model considered by many as a modern method of economic modelling. These models are based on microeconomic foundations derived from utility and profit optimisation. QUEST III has been estimated for the Euro area and USA using Bayesian methods for parameter estimates. In order to investigate various scenarios, DG ECFIN has developed several versions of this model. The Institute of Economic Research of the Slovak Academy of Sciences also participated in the review procedure and the creation of the model engine between 2009 and 2012 as part of the project entitled “System of regional models for impact assessment” (M. Radvanský et al.).
of the model depending on the type of disaggregation used for sectors and regions. The model can be applied to examine fiscal and monetary policy interactions. For the analysis of structural reforms, an extended version of the QUEST model has been developed to capture both investment in tangibles and intangibles with employment disaggregated into three skill categories. One of the model variants makes it possible to analyse various aspects of climate change and energy policy. All these variants have a different disaggregation calibrated for the euro area, EU-27 or a different unit. The model is not designed and cannot be used for regions of individual countries, but only for larger units.

The model treats economies as open economies and works with exogenous interest rates, world prices and world demand. The goods produced in the home country are imperfect substitutes for goods produced abroad. The model economy is populated by households and firms, hand in hand with a monetary and fiscal authority. Both the monetary and the fiscal authority respect the principles of the stabilisation policy based on pre-defined rules. The model makes a distinction between households whose liquidity is constrained by their disposable income and households which have full access to financial markets. Liquidity-constrained households cannot consume more than their disposable income and are not able to borrow against their future income to achieve an optimal level of consumption. Households which have access to financial markets are achieving an optimal level of consumption, which is a determining factor for making decisions about financial and real capital investments.

Both the RHOMOLO and QUEST models belong to the family of computable general equilibrium models. The principal differences include:

- RHOMOLO is a regional model and includes interregional trade and migration;
- RHOMOLO includes a more detailed representation of production technology;
- RHOMOLO has a more detailed sector dimension;
- Alongside economic aspects, RHOMOLO includes a detailed social and environmental dimension;
- RHOMOLO has a less detailed representation of the financial sector;
- RHOMOLO does not use forward-looking expectations;
- both models have a similar representation of the labour market, unemployment and wage structure,
- they have similar modelling of federal government consumption;
- both models include endogenous growth engines.

A.1.3 The HERMIN model

The origins of the HERMIN model lie in the complex multi-sectoral HERMES model that was developed by the European Commission in the early 1980s (d'Alcantara and Italianer, 1982). HERMIN was initially designed to be a small-scale version of the HERMES model framework in order to take account of the relatively limited data availability in the poorer, less-developed EU Member States and regions on the Western and Southern periphery (i.e., Ireland, Northern Ireland, Portugal, Spain, the Italian Mezzogiorno, and Greece). As a consequence of a lack of detailed macro-sectoral data and of sufficiently long time-series that had no structural breaks, modelling framework had to be based on a fairly simple theoretical framework. This relative simplicity in fact represents one of the major advantages of the HERMIN model.

One of the basic features of the general HERMIN model is the modelling of a small open economy. At the same time, the basic theoretical model takes into account the structure of
cohesion policy instruments. The creation and structure of this model must comply with certain basic requirements:

- The economy must be disaggregated into a small number of sectors that make it possible to identify the key structural shifts in the economy over the assessed period.
- The model must specify a mechanism through which an economy is connected to the external world and which should be able to capture the international trade of goods and services, inflation transmission, labour migration and foreign direct investment. The external (or world) economy is a very important direct and indirect factor influencing the economic growth and convergence of the lagging EU economies.
- Production in individual sectors incorporated in the model is described by production functions using a specific form – Constant Elasticity of Substitution (CES) and Cobb-Douglas (C-D).
- The creator and user of the model must recognise that a possible conflict may exist between actual situation in the country, as captured in a HERMIN model calibrated with the use of historical data, and the structure towards which the economy is evolving in an economic environment dominated by the Single European Market.

The most common way to comply with these requirements is to use a theoretical model structure of the general HERMIN model which consists of four sectors: the manufacturing sector (mainly internationally traded sectors), the market services sector (mainly internationally non-traded sectors which predominantly constitute domestic supply); the agriculture sector; and the public sector (also known as non-market services sector).

In terms of production, the model is composed of three blocks: a supply block, an absorption (demand) block and an income distribution block. It is designed as an integrated system of equations, with interrelationships between all their sub-components and sectors, and is based on the Keynesian assumptions and mechanisms which form the core of the model. In justified cases it also incorporates the features of the neoclassical economic theory, in particular as regards the supply block. For instance, manufacturing output is not simply driven by demand, it is also influenced by potential impacts of price and cost competitiveness, thus taking into account the assumption that firms seek out minimum cost locations (or countries) for production. The demand for production factors in manufacturing and market services is derived from the assumption of cost minimisation using a CES production function (a production function with constant elasticity of substitution).

In its supply block, the general HERMIN model is modelling the aggregate supply (outputs of individual sectors), output price, nominal wage index, wage inflation, competitiveness, labour demand and investment demand. It also contains equations for aggregate labour supply, unemployment and labour migration. The absorption (demand) block incorporates equations for the modelling of domestic consumption, domestic demand and net trade surplus. The income distribution block contains equations for the calculation of public sector expenditure and revenue, disposable income of households, public deficit, public debt and the current account balance.

The application of this model at the regional level has been developed in WARR, Poland, with each particular region (NUTS 2 in the case of Poland) being treated as a separate satellite model linked to national data.
A.1.4 The MASST model

The MASST makes it possible to investigate various alternatives of economic development based on selected policy scenarios; in other words, this modelling tool is capable of forecasting the trends in economic growth at the regional level, including the effects of various national and supranational policy scenarios on local welfare. In general, MASST is multiequational econometric model suitable for devising and evaluating various policy strategies, even though it is not an entirely general equilibrium model. The model consists of two intertwined components: a national block and a regional block. The so-called simulation algorithm intertwining the national and regional blocks forms an essential part of the model. This feedback mechanism enables the model to include in its forecasts the effects of both national and regional economic policy measures on growth and income redistribution across regions.

In essence, the national block is specified as a “standard” macroeconomic model for the EU-27 countries. By “standard”, the authors refer to the type of models used in the 1970s and 1980s by governments and central banks as programming and policy devising tools. (Chizzolini, 2005 MASST: a forecasting model of regional growth). In MASST, only the goods and services market is specified, whereas prices, wages, interest rates and exchange rates are taken as exogenous variables. While this may be considered a limitation of the model, its authors say that it fully meets their needs and that the above mentioned exogenous variables are, in fact, economic policy instruments (interest rate, exchange rate, as well as government expenditures) or policy targets (inflation).

The regional component of MASST is a truly unique addition to regional modelling due to its feedback mechanism which is rarely found in such models. Majority of models are using the top-down or bottom-up approach. In the MASST model, the top-down approach is used at first, with the national component of real growth being transformed into regional real growth. Regional growth is equal to the national real growth plus a region specific “difference” component. Unlike in other regional models, the MASST attempts to estimate a coefficient which describes the specificity of the region; in other words, the authors are trying the answer the question: “What makes a region potentially grow more or less than the nation in the short run?”. Using a quasi-production function approach, a component that makes it possible to estimate the difference between regional and national growth is specified as a reduced-form function of factors, such as economic and human resources, structural and sectoral characteristics, spatial processes, integration processes and territorial specificities. All the indicators of human and physical capital, of infrastructure, of sectoral characteristics and territorial specificities, as well as the structural funds, are treated in the model as exogenous variables. The effects such as potential labour force growth, population growth, spill-overs and the impact of integration among regions are entered as predetermined variables, i.e., lagged one time period, into the specification of the variable showing the difference between national and regional growth.

Demographic variables are determined within a separate block of the model where population depends on migration, fertility and mortality rates. Migration, modelled for three different age groups, depends in turn on lagged per capita income differentials relative to neighbouring regions as well as on some local labour market indicators and geographical specificities. The simulation procedure incorporates the growth potential arising from the available regional production factors into next year’s national growth, which means that it allows regional and national growth to be consistent within each assessed year.
A.1.5 The EuImpactMod model

The EUImpactMOD V4 model is a structural macroeconomic model belonging to the group of DSGE models. It has both the general properties typical of DSGE models and several specific properties which are as follows:

- the model takes into account the presence of the European Union and its support in the form of SF and CF;
- it is a multi-sectoral model that is capable of analysing the impact of structural funds in different sectors of the economy;
- it incorporates a government block through which decisions about the allocation of structural funds significantly affect the economic development;
- EU funds are divided into three categories: transfers, investment, and human resource development, making it possible to separately investigate their individual impacts on the economy.

The EUImpactMOD V4 is a model of an open economy whose main elements include the domestic economy and foreign countries (i.e., other EU Member States). Foreign countries are basically symmetric in relation to the domestic economy, i.e., having the same types of entities, sectors and markets as those in the domestic economy. The most important differences between the foreign and domestic economies are related to different estimation of parameters for the individual components of the model. It is important to note that the model includes a detailed representation of the relationship between the Visegrad Group countries and the EU. As stated above, it is a multi-sectoral model which takes into account several distinctive sectors:

- agricultural sector (agriculture, forestry, hunting, fishing)
- industrial sectors (light industry, heavy industry, energy, construction, mining)
- service sectors (trade, financial services, public services, transportation and other services)

According to the model, the state of the economy is supervised by the government with income generated from value-added tax, corporate income tax and personal income tax and from profits earned by the central bank. On the expenditure side, the funds are allocated on the basis of predetermined objectives. More specifically, the state allocates funds for the purposes of: public consumption; investments in different types of infrastructure (transport, telecommunications and environmental infrastructure, as well as social infrastructure such as health care); subsidies for companies from different sectors.

A2. Reasons for selecting the HERMIN model

The HERMIN model seems to be the most suitable type for analysing the cohesion policy’s impacts in Slovakia. One of the main reasons is that it was designed to be applied for small open economies with limited availability of data. Even though the QUESTIII and RHOMOLO models have a more advanced modelling engine and are much more complex, their application in Slovakia can be rather complicated or even impossible due to the above problems associated with the availability of complex regional data, or due to the need to include neighbouring regions of the Slovak Republic in order to ensure the required robustness of estimates. The RHOMOLO model is still in its testing phase and cannot be applied in individual countries yet. The QUESTIII model can be applied to a limited extent at the national level only.
As far as the HERMIN model framework is concerned, the similar national level constraints have been partly eliminated through the development effort at WARR, Poland, where a HERMIN type of model incorporating the regional dimension has been designed. For the purposes of evaluation work, further adjustments to the engine designed are expected. The upside is that the model has a suitable structure requiring less complex input data while offering a comprehensible interpretation of outputs. However, the possibility to incorporate certain features of the QUEST model (such as microeconomic decision-making by market stakeholders) remains a question. This aspect has yet to be verified during the empirical phase of its application at the regional level. Another option is to adopt the combination of top-down and bottom-up approaches offered by the MASST model. However, even this aspect has yet to be verified during the empirical phase of its application at the regional and national level. Due to the absenting regional dimension, the EUImpactMOD V4 model is not suitable for accomplishing the evaluation objectives and, for this reason, it will be left out of consideration.

The evaluator has set an ambitious goal in terms of designing and developing a regional HERMIN model for Slovakia that could be applied for ex-ante and ex-post evaluation of the cohesion policy impacts. For this purpose, Polish experts from WARR who took part in the development of the Polish regional model and possess the necessary experience have been invited to participate as team members. It is worth noting that, unlike QUESTIII or RHOMOLO, the HERMIN model is not capable of incorporating the so-called spill-over effects among regions. However, this is the price to be paid for its simple structure and applicability in Slovakia. Due to existing time and data constraints, it was not possible to adjust the QUESTIII model to the regional level.

Table 1 Overview of functionalities and technical specifications of econometric models

<table>
<thead>
<tr>
<th>Feature</th>
<th>RHOMOLO</th>
<th>QUEST III</th>
<th>MASST</th>
<th>EUImpacMod</th>
<th>HERMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model type</td>
<td>DSGE</td>
<td>DSGE</td>
<td>Econometric</td>
<td>DSGE</td>
<td>Econometric</td>
</tr>
<tr>
<td>Sectors included</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demand and supply side</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data intensity</td>
<td>Extreme</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Regionalisation</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Spill-over effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Application for a single country</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complexity</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Time intensity</td>
<td>Extreme</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Suitable for use in Slovakia</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>

Source: authors

A3. Selected HERMIN model applications

The HERMIN-type models have been successfully deployed in several tens of applications aimed at analysing the cohesion policy impacts on the labour market, economic growth, etc., be it at the national or regional level. This was one of the reasons why the team of authors have decided to develop two HERMIN-type models for Slovakia at the national and regional level. The models will be based on the existing and previously applied models and, for this reason, a
A structured overview of the selected HERMIN models that have already been applied in the EU and non-EU countries is given below.

A.1.6 HERMIN model applications in Slovakia

<table>
<thead>
<tr>
<th>Project title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex-ante Evaluation of the National Strategic Reference Framework of the Slovak Republic for 2007-2013</td>
<td>The HERMIN model has been developed and applied to evaluate the impacts of allocations provided from the EU funds.</td>
</tr>
<tr>
<td>Ex-ante Evaluation of the Partnership Agreement of the Slovak Republic for 2014-2020</td>
<td>The HERMIN model has been developed and applied to evaluate the impacts of allocations provided from the EU funds.</td>
</tr>
</tbody>
</table>

A.1.7 Selected HERMIN model applications abroad

<table>
<thead>
<tr>
<th>Project title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support to the national employment policy</td>
<td>Advisory activities for the Ministry of Labour and Social Policy of the FYROM. Development of the HERMIN model for Macedonia (HERMAK)</td>
</tr>
<tr>
<td>Extension of the cohesion system of HERMIN models and assessment of the impact of cohesion policy post-2013</td>
<td>Extending the CSHM to the EU-27, preparation and analysis of the EU cohesion policy impacts at Member State level, distinction between net contributor and net recipient of EU funding.</td>
</tr>
<tr>
<td>Cohesion System of HERMIN Models (CSHM): Technical Assistance 2009-2012</td>
<td>Organisation and implementation of modelling activities, review of ex-post evaluation, preparation of inputs for the EC’s Cohesion Report, advisory services and assistance to DG REGIO.</td>
</tr>
<tr>
<td>The Future of EU Structural Policy in East Germany</td>
<td>Update to the East German HERMIN model and its application in terms of ex-post impacts and an ex-ante evaluation of the Structural Funds for the 2000-2020 period</td>
</tr>
<tr>
<td>The economic return of cohesion expenditure for EU member states</td>
<td></td>
</tr>
<tr>
<td>Project title</td>
<td>Content</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Analysis of the Impact of Cohesion Policy</td>
<td>An analysis of the economic returns of structural and cohesion policy expenditure (ERDF and Cohesion Fund) to net contributors to the EU budget (“donor” Member States).</td>
</tr>
<tr>
<td>Ex-ante evaluation of the NSRFs for all “convergence” countries and two macro-regions (East Germany and the Italian Mezzogiorno) for the European Commission’s Fourth Cohesion Report.</td>
<td></td>
</tr>
<tr>
<td>Development of an Instrument to Analyse the Impact of Cohesion Policy: The Cohesion System of HERMIN Models (CSHM)</td>
<td>Design, development and implementation of a system of economic models for use by the Commission in analysing the EU cohesion policy impact.</td>
</tr>
<tr>
<td>Quantitative Assessment of the Estimated Impact of the NDP/NSRF using a Macroeconomic model for the Czech Republic</td>
<td>Design, development and testing of a HERMIN model for the Czech Republic and application of the new model in an ex-ante evaluation of the Czech Structural and Cohesion Funds for the 2004-2006 period.</td>
</tr>
<tr>
<td>A study of the macroeconomic impacts of reform of EU Cohesion Policy 2000-2006</td>
<td>Ex-ante evaluation of the NSRFs for all “convergence” countries and two macro-regions (East Germany and the Italian Mezzogiorno) for the European Commission’s Third Cohesion Report.</td>
</tr>
<tr>
<td>Evaluation of impacts of Polish NDPs</td>
<td>Construction of a prototype HERMIN model for Poland including a mechanism facilitating an initial ex-ante evaluation of the draft Polish National Development Plan (NDP) for 2004-2006. Subsequent development of the above model, and further applications for analysing the NDP. Development of a disaggregated version of the Polish model. Design, development and implementation of the Polish HERMIN model for 16 regions for an ex-ante evaluation of the regional operational programmes.</td>
</tr>
</tbody>
</table>

Source: http://www.herminonline.net/index.php/projects
A4. Keys aspects of the HERMIN model

Supply aspects

Manufacturing Sector
Output = f1 (World Demand, Domestic Demand, Competitiveness, time)
Employment = f2 (Output, Relative Factor Price Ratio, time)
Investment = f3 (Output, Relative Factor Price Ratio, time)
Capital Stock = Investment + (1 – d) Capital Stock (ttt-1)
Output Price = f4 (World Price * Exchange Rate, Unit Labour Costs)
Wage Rate = f5 (Output Price, Tax Wedge, Unemployment, Productivity)
Competitiveness = National/World Output Prices

Building and Construction Sector
Output = f6 (Total Investment in Construction)
Employment = f7 (Output, Relative Factor Price Ratio, time)
Investment = f8 (Output, Relative Factor Price Ratio, time)
Capital Stock = Investment + (1 – d) Capital Stock (t-1)
Output Price = Derived from Unit Labour Costs
Wage Inflation = Derived from Manufacturing Sector Wage Inflation

Market Services Sector
Output = f9 (Domestic Demand, World Demand)
Employment = f10 (Output, Relative Factor Price Ratio, time)
Investment = f11 (Output, Relative Factor Price Ratio, time)
Capital Stock = Investment + (1 – d) Capital Stock (ttt-1)
Output Price = Derived from Unit Labour Costs
Wage Inflation = Derived from Manufacturing Sector Wage Inflation

Agriculture and Non-Market Services: exogenous and/or instrumental variables

Labour Supply and Unemployment
Population Growth = f12 (Natural Growth, Migration)
Labour Force = f13 (Population, Labour Force Participation Rate)
Unemployment = Labour Force – Total Employment
Migration = f14 (Relative expected wage)

Demand (absorption) aspects
Consumption = f15 (Household Disposable Income)
Domestic Demand = Private and Public Consumption + Investment + Stock changes
Net Trade Surplus = Total Output – Domestic Demand

Income distribution aspects
Public sector expenditure prices = f16 (Output prices, Import prices, Indirect tax rates)
Income = Total Output
Household Disposable Income = Income + Transfers – Direct Taxes
Current Account Balance = Net Trade Surplus + Net Factor Income From Abroad
Public Sector Borrowing = Public Expenditure – Tax Rate * Tax Base
Public Sector Debt = (1 + Interest Rate) Debt (ttt-1) + Public Sector Borrowing

Exogenous variables:
External: World output and prices; exchange rates; interest rates;
Domestic: Public expenditure; tax rates

Supply side
- Agriculture (A)
- Manufacturing (B-E)
- Construction (F)
- Market services (G-N)
- Non-market services (O-U)

Absorption side
- Labour market demand
- Private consumption
- CPI, GDP deflator, import deflator
- Public sector government consumption
- Expenditures
- Govt. revenues

Labour market demand
- Output
- Added value
- Labour productivity
- Employment
- Investments
- Output price
- Wages
- Agriculture (A)
- Manufacturing (B-E)
- Construction (F)
- Market services (G-N)
- Non-market services (O-U)
A5. **Reference literature to Annex A**

Annex B: ITMS data disaggregation methodology

This methodology defines the manner in which data related to the drawing of financial resources from SF and CF in supra-regional projects are disaggregated for use in an econometric model. To perform this task, it was necessary to obtain the data on the drawing of financial resources from SF and CF during the 2007-2013 programming period in individual regions (NUTS 3). The proposed approach can be repeatedly used for consistent distribution of ITMS data for the processing of aggregate data and subsequent distribution by regional allocation down to the NUTS 3 level. The place of implementation is unequivocally known for most of the projects financed from SF and CF and can be attributed to a particular region. However, some projects are implemented across several regions and, for this reason, the spending of financial resources should likewise be distributed across more than one region. In the text below, the projects implemented in more than one NUTS 3 region are denoted as supra-regional projects. Within the ITMS, these projects are characterised through the LOCALISATION variable as follows: SLOVAK REPUBLIC, NUTS 2 Western Slovakia, NUTS 2 Central Slovakia and NUTS 2 Eastern Slovakia. As part of the presented analysis, supra-regional projects do not represent a group of projects that are identical to national projects; as at 31 December 2014, there were 168 implemented national projects which formed a sub-group of the implemented supra-regional projects (718). In quantifying the SF and CF absorption as part of supra-regional projects, it was necessary to bear in mind the specificities of operational programmes and supported projects, thus facilitating a more detailed disaggregation of data on absorption down to the level of regions.

Technical assistance projects

First of all it is worth noting that, given the specific nature of the technical assistance projects (TA), it is advisable to assess them separately. After identifying the specific measures under which technical assistance projects were being implemented, it was possible to determine the total amount of funds drawn. Due to the nature of this group of projects, the drawing of funds under a majority of operational programmes was bound to the Bratislava Self-Governing Region because the bodies responsible for the implementation of programmes and their supervision are, for the most part, based in Bratislava. The only exception is the Regional Operation Programme (ROP), in which case the implementation of a part of the programme is the responsibility of the self-governing region acting in the capacity of the Intermediate Body (based on the ratio submitted by the MA38), as well as the Operational Programme Environment, where a portion of the funding available under TA is allocated for the operation of the regional centres (REPIS). On top of that, based on information received from the individual MAs, the technical assistance projects under the Operational Programme Employment and Social Inclusion and under the Operational Programme Education were distributed based on the number of regions in which they are implemented.

38 As at 31 December 2013, the ratios of self-governing regions were as follows: BA – 70%; TT – 3%; TN, ZA, BB – 4%; NR, PO, KE – 5%, an update for 2014 has not been provided
Operational Programme Information Society

The absorption of funds under the Operational Programme Information Society (OPIS) amounted to almost EUR 558 million (EU source). Of this amount, 83% of the financial resources under this operational programme were spent on supra-regional projects. Supra-regional projects were predominantly implemented by public institutions. Activities carried out under most of the supra-regional OPIS projects have a nation-wide coverage. It was therefore reasonable to evenly disaggregate the funds drawn based on the number of regions in which the particular project had been implemented. In terms of disaggregating the drawing of funds down to the level of regions, rather than the “effect” of a project (the number of inhabitants), it is the provision of financial inputs and their use in the particular region which is considered to be the primary criterion.

Regional Operational Programme

The primary objective of the Regional Operational Programme (ROP) is to improve the availability and quality of public infrastructure and amenities in the regions. As its name implies, one would expect that the individual projects are implemented within a single region, yet there were a few supra-regional projects carried out under this operational programme. However, the amount of funds drawn under supra-regional projects (10 projects) only accounted for 2% (€24 million (EU source)) of the total volume of funds drawn under the Regional Operational Programme (€1.2 billion (EU source)). Most of these projects were carried out by central government bodies under the TA measure and can be described as auxiliary (technical and personnel capacities at MAs, publicity); in their case, the relevant disaggregation methodology has been described above in the section on technical assistance projects. For the rest of the supra-regional projects under the ROP, the funds drawn were disaggregated evenly based on the number of regions where a particular project had been implemented, as was the case with the OPIS.

Operational Programme Technical Assistance

The primary objective of this operational programme is to facilitate an efficient, effective and correct administration, implementation, financial management, control and audit of the structural funds and the cohesion fund in the period between 2007 and 2013. Under this operational programme, there were a total of 157 projects focusing on technical and personnel capacities, coordination and strategic activities or similar activities implemented at the national level. A majority of beneficiaries eligible for funding under the OP TA are Bratislava-based, with only a few of them having their seat in regions (e.g., regional managers of the horizontal priority ‘Marginalized Roma Communities’, regional managers of the horizontal priority ‘Sustainable development’, several offices of the Financial Control Administration). According to the Managing Authority’s analysis of the OP TA39, the following distribution ratio has been applied for the funds drawn: 97.7% of total expenditures for the Bratislava region and the remaining 2.3% of total expenditures were evenly distributed among the remaining seven regions.

39 As at 31 December 2013, an update for 2014 has not been provided
Operational Programme Bratislava Region

Under the Operational Programme Bratislava Region, all 351 projects were implemented in the territory of the Bratislava Self-governing Region. The total funds drawn as at 31 December 2014 amounted to EUR 60 million (EU source).

Operational Programme Transport

The amount of funds drawn under the Operational Programme Transport was some EUR 2.1 billion, with the funding for supra-regional projects accounting for 13%. Under the Operational Programme Transport, a total of 30 projects have been identified as supra-regional projects. These include: modernisation of railways and rolling stock of the national railway company ZSSK, improving the poor condition of roads, reconstruction of intersections and bridges, and various projects of the Ministry of Transport, Construction and Regional development (studies, analyses, equipment for the MA, etc.). Thanks to cooperation with the MA for the OP and due to a relatively small number of supra-regional projects, it was possible to obtain additional information regarding the implementation of projects (such as length in km, place of vehicle use, etc.) for determining the relevant regional allocation for each supra-regional project separately.

Operational Programme Environment

The volume of drawing under this operational programme has slightly exceeded the EUR 1 billion mark (EUR source), and almost 96% of this amount were been used for regional projects. There were 55 supra-regional projects which focused, for the most part, on monitoring and evaluation, deployment of information systems, building and reconstruction of monitoring capacities, various studies, public awareness, strategies, management, etc. Except for beneficiaries AGB ekoservis s.r.o., the City of Spišská Nová Ves, the SEZO - Spiš municipalities association and the Bojnice Zoological Garden, all projects involved state organisations with nationwide activities (e.g., the Slovak Hydrometeorological Institute (SHMÚ), the Slovak Water-management Enterprise (SVP), the Slovak Environment Inspection, etc.) and, for this reason, an indicator reflecting the number of locations where a particular project was implemented, representing a parameter suitable for approximating any particular regional allocation, has been applied to disaggregate the funds drawn under the projects down to the level of NUTS 3 regions.

Operational Programme Competitiveness and Economic Growth

Of the 892 projects implemented under this operational programme, only seven are supra-regional. However, as much as 84.3% of the total funds worth EUR 513 million have been used
under supra-regional projects. Among the beneficiaries of these supra-regional projects are GPEÚ, s. r. o., the European Investment Fund, the Slovak Innovation and Energy Agency and the Slovak Tourist Board and all of them have been implementing their projects within all NUTS 3 regions with the exception of the Bratislava Self-governing Region. The projects focused in particular on promotion, public awareness, bookkeeping and accounting audits, and initial grants. As a result of expecting similar effects for individual regions and due to availability of information, the funds absorption has been disaggregated based on project information concerning the regional eligibility for funding.

Operational Programme Education

This operational programme is aimed at developing and supporting human capital towards attaining the basic skills and key competencies necessary for a knowledge economy and the labour market; for this purpose, EUR 339 million have been used so far (EU source). The ratio between the number of regional and supra-regional projects is roughly 12:1; however, in terms of funding received, it represents 41:59. Supra-regional projects primarily focus on education and professional growth of teachers and other pedagogical staff, preparation of new educational programmes, development of vocational education, career orientation of students, improving the quality of education and introducing innovative forms of education at universities, competitiveness of Slovak companies, consultancy, etc., along with the technical assistance for the operational programme. Based on consultations with the MA for the OP, the number of places where the projects have been implemented was used as the criterion for the regional distribution of funds drawn under supra-regional projects. It is important to note that this distribution will not generate such allocation of funds which would fully reflect the actual situation; however, the managing authority also sees it fit for the intended purpose.

Operational Programme Research and Development

The funds drawn under this operational programme represent more than EUR 759 million (EU source); of this amount, supra-regional projects accounted for 28%. There were a total of 125 supra-regional projects which can be thematically divided among technical assistance projects, R&D infrastructure, building of centres of excellence, centres of research and centres of competence, specialized R&D, and modernisation of equipment at universities. The funds drawn have been disaggregated down to the level of individual NUTS 3 regions based on the number of places where projects have been implemented in particular regions, because the methodological procedure allowing to precisely determine the regional allocation of funds could not be defined even after consultations with the MA.
Operational Programme Employment and Social Inclusion

Of the 1,464 projects implemented under this operational programme, 201 were supra-regional. The total amount of funds drawn stood at EUR 711 million (EU source), with supra-regional projects accounting for almost 85%. Under this operational programme, supra-regional projects can be broken down into three main categories: the projects of the Central Office of Labour, Social Affairs and the Family (active labour market measures), the projects of the Ministry of Labour, Social Affairs and the Family (technical assistance) and other projects (education and human resources development). Due to the nature of the projects and based on supporting documentation received from the MA, the disaggregation of the drawing of funds based on project-level information about regional eligibility for funding has been identified as the most appropriate method.

Operational Programme Health

The key priorities of this operational programme priority include improving the quality, availability and effectiveness of healthcare and promoting health; as of 31 December 2013, almost EUR 233 million (EU source) has been drawn for the above objective, with regional projects accounting for as much as 97.4%. The national project “Completion of infrastructure of the National Transfusion Service of the Slovak Republic” in the amount of some EUR 6.1 million (EU source) is the only supra-regional project implemented to date on a total of 14 locations around Slovakia (including three locations in the Bratislava Self-governing Region). Even though the ITMS does not make it possible to keep track of the drawing of funds in the individual regions, it was still possible to identify, in cooperation with the MA for this operational programme, the drawing of funds in the individual regions based on supporting documents to each request for payment.
Annex C: Additional overviews

C.1 What is the quantification of the impacts of the SF and CF implementation on Slovakia’s overall economic performance at the national and regional level?

Table 1: Increase in average gross wage due to CSF

<table>
<thead>
<tr>
<th>Year</th>
<th>BA</th>
<th>TT</th>
<th>TN</th>
<th>NR</th>
<th>ZA</th>
<th>BB</th>
<th>PO</th>
<th>KE</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1.4%</td>
<td>1.0%</td>
<td>2.9%</td>
<td>0.9%</td>
<td>2.3%</td>
<td>2.4%</td>
<td>1.2%</td>
<td>1.6%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 2: Increase in household consumption due to CSF, in EUR million

<table>
<thead>
<tr>
<th>Year</th>
<th>BB</th>
<th>BA</th>
<th>KE</th>
<th>NR</th>
<th>PO</th>
<th>TN</th>
<th>TT</th>
<th>ZA</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>14.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>23.8</td>
</tr>
<tr>
<td>2009</td>
<td>63.2</td>
<td>17.8</td>
<td>85.1</td>
<td>20.0</td>
<td>103.5</td>
<td>45.2</td>
<td>29.4</td>
<td>19.2</td>
<td>383.4</td>
</tr>
<tr>
<td>2010</td>
<td>114.1</td>
<td>53.2</td>
<td>164.4</td>
<td>56.0</td>
<td>223.3</td>
<td>121.7</td>
<td>96.8</td>
<td>69.2</td>
<td>898.7</td>
</tr>
<tr>
<td>2011</td>
<td>138.8</td>
<td>109.7</td>
<td>165.8</td>
<td>127.0</td>
<td>245.4</td>
<td>131.8</td>
<td>193.0</td>
<td>130.8</td>
<td>1242.4</td>
</tr>
<tr>
<td>2012</td>
<td>179.6</td>
<td>178.2</td>
<td>228.3</td>
<td>187.8</td>
<td>303.3</td>
<td>186.6</td>
<td>262.5</td>
<td>216.9</td>
<td>1743.2</td>
</tr>
<tr>
<td>2013</td>
<td>280.2</td>
<td>176.0</td>
<td>316.5</td>
<td>170.5</td>
<td>309.2</td>
<td>195.4</td>
<td>297.3</td>
<td>256.5</td>
<td>2001.3</td>
</tr>
<tr>
<td>2014</td>
<td>417.1</td>
<td>193.4</td>
<td>325.3</td>
<td>175.2</td>
<td>378.4</td>
<td>181.7</td>
<td>272.3</td>
<td>224.6</td>
<td>2167.9</td>
</tr>
<tr>
<td>2015</td>
<td>487.1</td>
<td>292.5</td>
<td>507.7</td>
<td>291.7</td>
<td>574.0</td>
<td>319.5</td>
<td>443.1</td>
<td>355.2</td>
<td>3270.8</td>
</tr>
</tbody>
</table>

Source: calculations by authors
C.8 Has the SF and CF implementation led to changes and/or to an increase in the added value generated in individual sectors of Slovakia’s national economy?

Table 1: Share of growth in gross value added generated by the SF and CF implementation, the Bratislava region, in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>0.1</td>
<td>2.2</td>
<td>1.3</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>0.2</td>
<td>2.5</td>
<td>1.6</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>0.3</td>
<td>3.0</td>
<td>2.0</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>0.3</td>
<td>5.2</td>
<td>3.1</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>0.5</td>
<td>8.1</td>
<td>4.5</td>
<td>1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>0.6</td>
<td>8.9</td>
<td>5.1</td>
<td>1.7</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 2: Share of growth in gross value added generated by the SF and CF implementation, the Banská Bystrica region, in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>8.0</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.2</td>
<td>20.4</td>
<td>4.2</td>
<td>1.2</td>
<td>3.9</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>2.2</td>
<td>18.5</td>
<td>4.7</td>
<td>2.0</td>
<td>4.4</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>3.0</td>
<td>27.7</td>
<td>6.5</td>
<td>2.2</td>
<td>6.0</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>3.7</td>
<td>24.4</td>
<td>7.3</td>
<td>2.3</td>
<td>6.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>4.1</td>
<td>19.1</td>
<td>6.9</td>
<td>2.6</td>
<td>5.9</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>5.5</td>
<td>49.0</td>
<td>11.7</td>
<td>4.1</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Source: calculations by authors
Table 3: Share of growth in gross value added generated by the SF and CF implementation, the Košice region, in %

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.1</td>
<td>2.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>0.4</td>
<td>7.9</td>
<td>1.7</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>1.1</td>
<td>14.2</td>
<td>3.2</td>
<td>1.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>1.8</td>
<td>25.8</td>
<td>5.1</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>2.8</td>
<td>28.6</td>
<td>6.6</td>
<td>1.9</td>
<td>6.0</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>3.2</td>
<td>17.3</td>
<td>5.6</td>
<td>2.2</td>
<td>5.1</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>4.2</td>
<td>34.3</td>
<td>8.7</td>
<td>3.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 4: Share of growth in gross value added generated by the SF and CF implementation, the Nitra region, in %

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.1</td>
<td>2.8</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>0.5</td>
<td>7.1</td>
<td>1.7</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>1.3</td>
<td>13.9</td>
<td>3.4</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>2.0</td>
<td>23.0</td>
<td>4.9</td>
<td>1.6</td>
<td>4.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>2.5</td>
<td>16.1</td>
<td>4.7</td>
<td>1.6</td>
<td>4.0</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>2.8</td>
<td>13.3</td>
<td>4.8</td>
<td>1.9</td>
<td>4.0</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>3.7</td>
<td>27.5</td>
<td>7.7</td>
<td>2.9</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 5: Share of growth in gross value added generated by the SF and CF implementation, the Prešov region, in %

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.1</td>
<td>4.1</td>
<td>0.7</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>0.8</td>
<td>14.8</td>
<td>2.6</td>
<td>0.8</td>
<td>3.3</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>2.4</td>
<td>26.2</td>
<td>5.1</td>
<td>1.8</td>
<td>6.3</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>3.4</td>
<td>39.5</td>
<td>6.7</td>
<td>2.2</td>
<td>8.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>5.0</td>
<td>43.4</td>
<td>8.4</td>
<td>2.6</td>
<td>9.6</td>
</tr>
</tbody>
</table>
Table 6: Share of growth in gross value added generated by the SF and CF implementation, the Trenčín region, in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.5</td>
<td>13.2</td>
<td>2.4</td>
<td>0.2</td>
<td>2.5</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>1.6</td>
<td>27.3</td>
<td>4.7</td>
<td>0.6</td>
<td>4.7</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>3.1</td>
<td>20.5</td>
<td>5.0</td>
<td>0.9</td>
<td>4.7</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>4.3</td>
<td>29.6</td>
<td>6.9</td>
<td>1.2</td>
<td>6.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>6.5</td>
<td>46.0</td>
<td>10.3</td>
<td>1.5</td>
<td>9.0</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>8.2</td>
<td>34.5</td>
<td>10.2</td>
<td>1.9</td>
<td>9.1</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>11.6</td>
<td>74.9</td>
<td>16.2</td>
<td>2.7</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 7: Share of growth in gross value added generated by the SF and CF implementation, the Trnava region, in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.1</td>
<td>2.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>0.4</td>
<td>5.7</td>
<td>1.7</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2011</td>
<td>0.0</td>
<td>1.2</td>
<td>10.5</td>
<td>3.3</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>1.9</td>
<td>18.6</td>
<td>5.3</td>
<td>0.9</td>
<td>4.0</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>2.5</td>
<td>14.8</td>
<td>5.3</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>2.9</td>
<td>13.8</td>
<td>5.7</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>3.8</td>
<td>23.7</td>
<td>8.4</td>
<td>1.9</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Table 8: Share of growth in gross value added generated by the SF and CF implementation, the Žilina region, in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Agriculture</th>
<th>Industry</th>
<th>Construction</th>
<th>Market services</th>
<th>Non-market services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.4</td>
<td>10.6</td>
<td>2.3</td>
<td>0.3</td>
<td>2.7</td>
</tr>
<tr>
<td>2010</td>
<td>0.0</td>
<td>1.6</td>
<td>22.5</td>
<td>5.2</td>
<td>0.9</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Assessment of Cohesion Policy Impacts on the Development of Slovakia Using a Suitable Econometric Model
Evaluation Report 2015
June 2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Non-market Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>2012</td>
<td>0.0</td>
<td>4.1</td>
</tr>
<tr>
<td>2013</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2014</td>
<td>0.0</td>
<td>6.3</td>
</tr>
<tr>
<td>2015</td>
<td>0.0</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Source: calculations by authors

Chart 1: Additional share of gross value added of the industry sector in the total gross value added generated by the SF and CF spending

Chart 2: Additional share of gross value added of the non-market services sector in the total gross value added generated by the SF and CF spending

Source: calculations by authors
Assessment of Cohesion Policy Impacts on the Development of Slovakia Using a Suitable Econometric Model
Evaluation Report 2015
June 2015

Source: calculations by authors

Chart 3: Additional share of gross value added of the agriculture sector in the total gross value added generated by the SF and CF spending

Source: calculations by authors
C.13 To what extent has the effect of the long-term sustainability of existing and newly created jobs, driven by the SF and CF spending, been fulfilled in selected sectors?

Table 1: Creation of jobs at the regional level in individual sectors

<table>
<thead>
<tr>
<th>Region</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bratislava region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>14 %</td>
<td>0.0 %</td>
<td>36 %</td>
<td>33 %</td>
<td>17 %</td>
<td>93 %</td>
<td>45 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>0.1</td>
<td>0.0</td>
<td>2.1</td>
<td>2.3</td>
<td>0.9</td>
<td>1.6</td>
<td>3.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>0.9</td>
<td>0.0</td>
<td>6.0</td>
<td>6.9</td>
<td>5.4</td>
<td>1.7</td>
<td>7.8</td>
<td>14.9</td>
</tr>
<tr>
<td>Žilina region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>20 %</td>
<td>97 %</td>
<td>55 %</td>
<td>47 %</td>
<td>13 %</td>
<td>94 %</td>
<td>45 %</td>
<td>38 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>0.6</td>
<td>0.7</td>
<td>3.0</td>
<td>4.2</td>
<td>0.4</td>
<td>0.6</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>2.9</td>
<td>0.7</td>
<td>5.4</td>
<td>9.0</td>
<td>3.1</td>
<td>0.7</td>
<td>6.3</td>
<td>10.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trnava region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>20 %</td>
<td>97 %</td>
<td>55 %</td>
<td>47 %</td>
<td>13 %</td>
<td>94 %</td>
<td>45 %</td>
<td>38 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>0.6</td>
<td>0.7</td>
<td>3.0</td>
<td>4.2</td>
<td>0.4</td>
<td>0.6</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>2.9</td>
<td>0.7</td>
<td>5.4</td>
<td>9.0</td>
<td>3.1</td>
<td>0.7</td>
<td>6.3</td>
<td>10.1</td>
</tr>
<tr>
<td>Banská Bystrica region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>18 %</td>
<td>99 %</td>
<td>42 %</td>
<td>44 %</td>
<td>9 %</td>
<td>96 %</td>
<td>31 %</td>
<td>26 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>1.3</td>
<td>3.9</td>
<td>4.9</td>
<td>10.1</td>
<td>0.8</td>
<td>1.6</td>
<td>2.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>7.2</td>
<td>3.8</td>
<td>11.8</td>
<td>22.8</td>
<td>8.5</td>
<td>1.6</td>
<td>6.7</td>
<td>16.8</td>
</tr>
<tr>
<td>Prešov region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>17 %</td>
<td>96 %</td>
<td>52 %</td>
<td>42 %</td>
<td>11 %</td>
<td>99 %</td>
<td>34 %</td>
<td>29 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>0.6</td>
<td>0.7</td>
<td>2.6</td>
<td>3.9</td>
<td>0.6</td>
<td>0.8</td>
<td>3.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>3.6</td>
<td>0.7</td>
<td>5.1</td>
<td>9.3</td>
<td>5.8</td>
<td>0.8</td>
<td>8.8</td>
<td>15.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
<th>Construction</th>
<th>Industry</th>
<th>Market Services</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenčín region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>18 %</td>
<td>99 %</td>
<td>42 %</td>
<td>44 %</td>
<td>9 %</td>
<td>96 %</td>
<td>31 %</td>
<td>26 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>1.3</td>
<td>3.9</td>
<td>4.9</td>
<td>10.1</td>
<td>0.8</td>
<td>1.6</td>
<td>2.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>7.2</td>
<td>3.8</td>
<td>11.8</td>
<td>22.8</td>
<td>8.5</td>
<td>1.6</td>
<td>6.7</td>
<td>16.8</td>
</tr>
<tr>
<td>Košice region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable jobs (share)</td>
<td>17 %</td>
<td>96 %</td>
<td>52 %</td>
<td>42 %</td>
<td>11 %</td>
<td>99 %</td>
<td>34 %</td>
<td>29 %</td>
</tr>
<tr>
<td>Sustainable jobs (number)</td>
<td>0.6</td>
<td>0.7</td>
<td>2.6</td>
<td>3.9</td>
<td>0.6</td>
<td>0.8</td>
<td>3.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Number of jobs created</td>
<td>3.6</td>
<td>0.7</td>
<td>5.1</td>
<td>9.3</td>
<td>5.8</td>
<td>0.8</td>
<td>8.8</td>
<td>15.4</td>
</tr>
</tbody>
</table>

For the purposes of preparing the evaluation, the missing regional data was obtained by means of econometric-optimisation methods. The econometric-optimisation method consisted of determining the value of the observed variable during the period of uncertainty between 2012 and 2013 based on partial information consisting of the actually observed value of a national-level indicator and the observed regional trends in the development of several factors affecting the variable in question in which case the information about the trends in such factors is already available at the given level (for instance, labour market statistics published at the same time as the national data). For the purposes of the HERMIN model, it was necessary to include the values of the gross domestic product (GDP), gross value added (GVA), employment based on national accounts (L, ESA), gross fixed capital formation (GFCF), and employee remuneration (ER) in five aggregated sectors of the economy.

An ex-post estimation of the regional variables is based on the available statistical data and on available alternative estimation methods for acquiring such data. In general, two sources of data can be identified at the regional level. The most readily available source of labour market data is the Labour Force Sample Survey (LFSS). At the time of updating the evaluation, regional data were available for the period between 1997 and 2013. The second source of data consisted of regional accounts which were created using the production method, i.e. in the absence of detailed data about consumption components. Nonetheless, the regional GDP estimation, as reported by the Statistical Office of the Slovak Republic using the production method, is balanced out by aggregate (national) level data. The national level will therefore serve as the boundary for determining the regional data in 2014. As shown in the methodology section, the lagged reporting of regionalised national accounts is t-2, i.e., the currently published data represent data from 2013. Part of the regional data has been estimated by means of the “partial ex-post analysis” using the data that is already available for the given period.\(^\text{40}\)

The procedure used in the estimation was based on the need to minimise the level of uncertainty. First of all, employment data in line with the European System of Accounts (ESA) has been quantified on the basis of sectoral and regional employment data reported under the Labour Force Sample Survey while applying optimisation and sector boundaries, i.e.

\[
L_{i,o,t}^{\text{ESA}} = f\left(L_{i,o,t}^{\text{LFS}}, \frac{L_{o,t}^{\text{ESA}}}{L_{i,o,t}^{\text{LFS}}}
ight) + \epsilon_{t0} \quad \text{with a boundary of } \sum_{i} L_{i,o,t}^{\text{ESA}} = L_{o,t}^{\text{ESA}},
\]

where \(i\) is the \(i\)-th region, \(o\) is the sector (five sectors identical with the model definition) and \(t\) is the time period. The employment estimation according to ESA is based on changes in structure indicated in the Labour Force Sample Survey and adjusted for the estimation error from the last observed period \(t_0\) (2013).

Based on the creation of jobs, the gross fixed capital formation for individual regions has been estimated on a sector basis.

\(^{40}\) The described approach is based on the work of Radvanský (2014) “Možnosti analyzovania vplyvu kohéznnej politiky na regióny a trh práce SR (Possibilities of Analysing the Impact of Cohesion Policy on Slovak Regions and Labour Market)” which has been modified and supplemented with the sector dimension. The above document contains a more detailed elaboration on the estimation of parameters in the regional ex-post and ex-ante model while optimising the instrumental variables (of the economic policy).
\[DFK_{\text{lo}, t} = f(DFK_{\text{lo}, t-1}, L_{\text{lo}}) \] with a boundary of \[\sum_{i} DFK_{\text{lo}, t} = DFK_{\text{lo}, t} \] .

The question remains how to address the deviation (residual) from the last observed period, as it can distort the estimation in the subsequent periods due to the fact that the calculated estimates are based on the long-term stability of the system. One of the possible solutions would be to apply the value of this residual in the last observed period \(\varepsilon_t \), while presuming its exponential return to the long-term trend. Analytically, we can derive the value of the observed variable in the period \(t + \Delta t \) from an estimate using the equation in a log-log format:

\[\ln(DFK_{\text{lo}, t}) = \alpha_t + \beta_{1, \text{lo}} \ln(DFK_{\text{lo}, t-1}) + \beta_{2, \text{lo}} \ln(DFK_{\text{lo}, t-1}) + \varepsilon_{\text{lo}, t} \]

where, after making estimate, the parameter of response to the residual in time \(t + \Delta t \) can be defined as \[\frac{1}{1+\Delta t} \varepsilon_t \], i.e., after making an ex-post forecast of the first missing period (2012), the response parameter would be equal to \[\frac{1}{2} \varepsilon_t \] or, in the second period, to \[\frac{1}{3} \varepsilon_t \] etc. The estimated value of gross fixed capital formation for the i-th region can be expressed as

\[
\hat{DFK}_{\text{lo}, t+\Delta t} = e^{a + \hat{\beta}_1 \ln(DFK_{\text{lo}, t+\Delta t}) + \hat{\beta}_2 \ln(\text{lo}, t+\Delta t)} + \frac{1}{1+\Delta t} \varepsilon_t .
\]

In the event of distortions in the ex-post forecast, it is possible the use the value adjusted by a constant value of the last observed error, i.e.

\[
\hat{DFK}_{\text{lo}, t+\Delta t} = e^{a + \hat{\beta}_1 \ln(DFK_{\text{lo}, t+\Delta t}) + \hat{\beta}_2 \ln(\text{lo}, t+\Delta t)} + k \varepsilon_t,
\]

with a boundary of \[\sum_{i} DFK_{\text{lo}, t} = DFK_{\text{lo}, t} \] .

A similar approach to handling the estimation errors in the last known period will also be applied to other estimated indicators.

We have analysed several alternatives for estimating the values of gross value added. We used the production function assumptions \[GV A_{\text{lo}, t} = GV A_{\text{lo}, t}(K_{\text{lo}}, L_{\text{lo}}) \], where \(K \) is the regional capital stock or its alternatives \[GV A_{\text{lo}, t} = GV A_{\text{lo}, t}(GV A_{\text{lo}, t-1}, DFK_{\text{lo}, t-1}, L_{\text{lo}, t}) \], however, employment seemed to be insufficiently demonstrable for the purposes of estimation. Finally, the following alternative estimation of the gross value added appeared to be suitable:

\[GV A_{\text{lo}, t} = GV A_{\text{lo}, t}(GV A_{\text{lo}, t-1}, DFK_{\text{lo}, t}) \] with sector- and region-based boundaries, i.e.,

\[GV A_o = \sum_i GV A_{\text{lo}, t} \] and, on an aggregate basis: \[GV A = \sum_o GV A_o \].

An estimate of the values of the gross value added parameter at the regional level has been entered as an endogenous variable in the econometric equation for calculating the nominal GDP, i.e., \[Y_t = Y_t(GV A_t) \]. By applying the condition \[Y = \sum_i Y_i \] to the equation, the nominal GDP values were estimated.

Calculation of employee remuneration for 2012 and 2013 is based on the correlation with the trends in employment rate and wages. A detailed estimate of employee remuneration at the regional and sectoral level \(W_{\text{lo}} \) was based on an estimate of labour productivity expressed as the ratio of the value added, sector-level of wages and the number of unemployed in the region (a value known from the LSFS), i.e.,

\[W_{\text{lo}} = W_{\text{lo}, o}(PP_{\text{lo}}, U_{\text{lo}}W_o) \].

138
where PP_i is labour productivity expressed as the ratio of value added and the employment rate $PP_{i,o} = \frac{GVA_i}{L_i}$. The estimation of employee remuneration represents a logical assumption concerning wages paid for an estimated number of employees at the regional and sectoral level, i.e. $OZ_{i,o} = OZ_{i,o} (12 \times W_{i,o} \times L_{i,o})$, where $\sum_{t} OZ_{i,o,t} = OZ_{0,t}$. The results from the estimation of the above parameters have been included in the model and the values of the regional- and sector-level variables have been graphically represented in the material. The reason why they are not detailed in this annex is that the volume of outputs represents more than 250 time series (7 parameters x 8 regions x 5 sectors) because of the high level of detail used for outputs at the sectoral and regional level. In those cases where the results fall short of meeting the expectations, it is possible to consider recalibrating certain parameters or making adjustments to the specification of the model, as well as using alternative estimates. However, when it comes to analysing the scenarios, this procedure would not be necessary because regional comparisons are made against the baseline scenario and not directly for the purposes of forecasting the parameters in the future. The possibility of an error build-up within this estimate is limited by the parametric boundaries at the aggregate level for the ex-post period (2014).